Cargando…
Developing Machine Learning Algorithms on Routinely Collected Administrative Health Data - Lessons from Ontario, Canada.
Autores principales: | Harish, Vinyas, Ravaut, Mathieu, Yi, Seung Eun, Gutierrez, Jahir, Sadeghi, Hamed, Leung, Kin Kwan, Watson, Tristan, Kornas, Kathy, Poutanen, Tomi, Volkovs, Maksims, Rosella, Laura |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Swansea University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644836/ http://dx.doi.org/10.23889/ijpds.v7i3.1851 |
Ejemplares similares
-
Development and Validation of a Machine Learning Model Using Administrative Health Data to Predict Onset of Type 2 Diabetes
por: Ravaut, Mathieu, et al.
Publicado: (2021) -
Predicting adverse outcomes due to diabetes complications with machine learning using administrative health data
por: Ravaut, Mathieu, et al.
Publicado: (2021) -
Predicting hospitalisations related to ambulatory care sensitive conditions with machine learning for population health planning: derivation and validation cohort study
por: Yi, Seung Eun, et al.
Publicado: (2022) -
Risk stratification for COVID-19 hospitalization: a multivariable model based on gradient-boosting decision trees
por: Gutierrez, Jahir M., et al.
Publicado: (2021) -
Regional variation of premature mortality in Ontario, Canada: a spatial analysis
por: Buajitti, Emmalin, et al.
Publicado: (2019)