Cargando…
A population data-driven approach to identifying ‘Long COVID’ cases in support of diagnosis and treatment.
Autores principales: | Enns, Jennifer, Katz, Alan, Yogendran, Marina, Urquia, Marcelo, Muthukumarana, Saman, Matharaarachchi, Surani, Singer, Alexander, Nickel, Nathan, Star, Leona, Cavett, Teresa, Keynan, Yoav, Lix, Lisa, Sanchez-Ramirez, Diana |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Swansea University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644890/ http://dx.doi.org/10.23889/ijpds.v7i3.1924 |
Ejemplares similares
-
Discovering Long COVID Symptom Patterns: Association Rule Mining and Sentiment Analysis in Social Media Tweets
por: Matharaarachchi, Surani, et al.
Publicado: (2022) -
Minimizing features while maintaining performance in data classification problems
por: Matharaarachchi, Surani, et al.
Publicado: (2022) -
Documenting First Nations Access to COVID Vaccines: A whole-population linked administrative data study.
por: Nickel, Nathan C., et al.
Publicado: (2022) -
Chronic Disease Case Definitions for Electronic Medical Records: A Canadian Validation Study
por: Lix, Lisa, et al.
Publicado: (2017) -
Changes in health indicator gaps between First Nations and other residents of Manitoba
por: Katz, Alan, et al.
Publicado: (2021)