Cargando…

Postcranial skeletal pneumaticity in non‐aquatic neoavians: Insights from accipitrimorphae

Postcranial skeletal pneumaticity, air‐filled bones of the trunk and limbs, is exclusive to birds among extant tetrapods and exhibits significant variation in its expression among different species. Such variation is not random but exhibits relationships with both body mass and locomotor specializat...

Descripción completa

Detalles Bibliográficos
Autores principales: Gutherz, Samuel B., O'Connor, Patrick M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644947/
https://www.ncbi.nlm.nih.gov/pubmed/35981708
http://dx.doi.org/10.1111/joa.13742
_version_ 1784826859799707648
author Gutherz, Samuel B.
O'Connor, Patrick M.
author_facet Gutherz, Samuel B.
O'Connor, Patrick M.
author_sort Gutherz, Samuel B.
collection PubMed
description Postcranial skeletal pneumaticity, air‐filled bones of the trunk and limbs, is exclusive to birds among extant tetrapods and exhibits significant variation in its expression among different species. Such variation is not random but exhibits relationships with both body mass and locomotor specializations. Most species‐level comparative research to date has focused on aquatic‐oriented taxa (e.g., Anseriformes). The lack of data from non‐aquatic birds constrains our ability to characterize global (i.e., avian‐wide) patterns of this trait complex. To address this gap, the study conducted herein quantified postcranial pneumaticity in Accipitrimorphae, a mostly terrestrial clade composed of species that span a range of body sizes and exhibit diverse flight/foraging behaviors. All examined species (n = 88) invariably pneumatized the postaxial through pre‐caudal vertebrae, sternum, coracoid, humerus, vertebral and sternal ribs, and pelvic girdle, a pattern herein referred to as the accipitrimorph baseline. Of the 88 sampled species, 41 expanded upon this pattern, whereas 10 species exhibited a reduction. No species deviated from the accipitrimorph baseline by more than two anatomical regions. A phylogenetically‐informed regression analysis failed to identify a significant relationship between body mass and pneumaticity. However, specific pneumaticity phenotypes deviating from the baseline were correlated with aspects of wing morphology, tail length, and home range size. Results from this and previous studies provide clarity on two hypotheses: (1) aquatic taxa display distinct pneumaticity expression patterns relative to non‐aquatic birds, notably with reductions in the proportion of the skeleton filled with air in diving specialists and (2) contemporary comparative studies, including the one herein, that explicitly account for phylogenetic relationships consistently fail to support the oft‐cited positive relationship between pneumaticity and body mass. Instead, historical relationships and functional/ecological attributes (e.g., diving, specialized flight behaviors) appear to be the primary drivers underlying patterns of variation in this trait complex.
format Online
Article
Text
id pubmed-9644947
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-96449472022-11-14 Postcranial skeletal pneumaticity in non‐aquatic neoavians: Insights from accipitrimorphae Gutherz, Samuel B. O'Connor, Patrick M. J Anat Original Articles Postcranial skeletal pneumaticity, air‐filled bones of the trunk and limbs, is exclusive to birds among extant tetrapods and exhibits significant variation in its expression among different species. Such variation is not random but exhibits relationships with both body mass and locomotor specializations. Most species‐level comparative research to date has focused on aquatic‐oriented taxa (e.g., Anseriformes). The lack of data from non‐aquatic birds constrains our ability to characterize global (i.e., avian‐wide) patterns of this trait complex. To address this gap, the study conducted herein quantified postcranial pneumaticity in Accipitrimorphae, a mostly terrestrial clade composed of species that span a range of body sizes and exhibit diverse flight/foraging behaviors. All examined species (n = 88) invariably pneumatized the postaxial through pre‐caudal vertebrae, sternum, coracoid, humerus, vertebral and sternal ribs, and pelvic girdle, a pattern herein referred to as the accipitrimorph baseline. Of the 88 sampled species, 41 expanded upon this pattern, whereas 10 species exhibited a reduction. No species deviated from the accipitrimorph baseline by more than two anatomical regions. A phylogenetically‐informed regression analysis failed to identify a significant relationship between body mass and pneumaticity. However, specific pneumaticity phenotypes deviating from the baseline were correlated with aspects of wing morphology, tail length, and home range size. Results from this and previous studies provide clarity on two hypotheses: (1) aquatic taxa display distinct pneumaticity expression patterns relative to non‐aquatic birds, notably with reductions in the proportion of the skeleton filled with air in diving specialists and (2) contemporary comparative studies, including the one herein, that explicitly account for phylogenetic relationships consistently fail to support the oft‐cited positive relationship between pneumaticity and body mass. Instead, historical relationships and functional/ecological attributes (e.g., diving, specialized flight behaviors) appear to be the primary drivers underlying patterns of variation in this trait complex. John Wiley and Sons Inc. 2022-08-18 2022-12 /pmc/articles/PMC9644947/ /pubmed/35981708 http://dx.doi.org/10.1111/joa.13742 Text en © 2022 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Original Articles
Gutherz, Samuel B.
O'Connor, Patrick M.
Postcranial skeletal pneumaticity in non‐aquatic neoavians: Insights from accipitrimorphae
title Postcranial skeletal pneumaticity in non‐aquatic neoavians: Insights from accipitrimorphae
title_full Postcranial skeletal pneumaticity in non‐aquatic neoavians: Insights from accipitrimorphae
title_fullStr Postcranial skeletal pneumaticity in non‐aquatic neoavians: Insights from accipitrimorphae
title_full_unstemmed Postcranial skeletal pneumaticity in non‐aquatic neoavians: Insights from accipitrimorphae
title_short Postcranial skeletal pneumaticity in non‐aquatic neoavians: Insights from accipitrimorphae
title_sort postcranial skeletal pneumaticity in non‐aquatic neoavians: insights from accipitrimorphae
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644947/
https://www.ncbi.nlm.nih.gov/pubmed/35981708
http://dx.doi.org/10.1111/joa.13742
work_keys_str_mv AT gutherzsamuelb postcranialskeletalpneumaticityinnonaquaticneoaviansinsightsfromaccipitrimorphae
AT oconnorpatrickm postcranialskeletalpneumaticityinnonaquaticneoaviansinsightsfromaccipitrimorphae