Cargando…

Federated Learning for cross-jurisdictional analyses: A case study.

Detalles Bibliográficos
Autores principales: Azimaee, Mahmoud, Lix, Lisa M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Swansea University 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644963/
http://dx.doi.org/10.23889/ijpds.v7i3.2026
_version_ 1784826862298464256
author Azimaee, Mahmoud
Lix, Lisa M.
author_facet Azimaee, Mahmoud
Lix, Lisa M.
author_sort Azimaee, Mahmoud
collection PubMed
description
format Online
Article
Text
id pubmed-9644963
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Swansea University
record_format MEDLINE/PubMed
spelling pubmed-96449632022-11-18 Federated Learning for cross-jurisdictional analyses: A case study. Azimaee, Mahmoud Lix, Lisa M. Int J Popul Data Sci Article Swansea University 2022-08-25 /pmc/articles/PMC9644963/ http://dx.doi.org/10.23889/ijpds.v7i3.2026 Text en https://creativecommons.org/licenses/by/4.0/This work is licenced under a Creative Commons Attribution 4.0 International License.
spellingShingle Article
Azimaee, Mahmoud
Lix, Lisa M.
Federated Learning for cross-jurisdictional analyses: A case study.
title Federated Learning for cross-jurisdictional analyses: A case study.
title_full Federated Learning for cross-jurisdictional analyses: A case study.
title_fullStr Federated Learning for cross-jurisdictional analyses: A case study.
title_full_unstemmed Federated Learning for cross-jurisdictional analyses: A case study.
title_short Federated Learning for cross-jurisdictional analyses: A case study.
title_sort federated learning for cross-jurisdictional analyses: a case study.
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644963/
http://dx.doi.org/10.23889/ijpds.v7i3.2026
work_keys_str_mv AT azimaeemahmoud federatedlearningforcrossjurisdictionalanalysesacasestudy
AT lixlisam federatedlearningforcrossjurisdictionalanalysesacasestudy