Cargando…
A brief survey of tools for genomic regions enrichment analysis
Functional enrichment analysis or pathway enrichment analysis (PEA) is a bioinformatics technique which identifies the most over-represented biological pathways in a list of genes compared to those that would be associated with them by chance. These biological functions are found on bioinformatics a...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645122/ https://www.ncbi.nlm.nih.gov/pubmed/36388843 http://dx.doi.org/10.3389/fbinf.2022.968327 |
Sumario: | Functional enrichment analysis or pathway enrichment analysis (PEA) is a bioinformatics technique which identifies the most over-represented biological pathways in a list of genes compared to those that would be associated with them by chance. These biological functions are found on bioinformatics annotated databases such as The Gene Ontology or KEGG; the more abundant pathways are identified through statistical techniques such as Fisher’s exact test. All PEA tools require a list of genes as input. A few tools, however, read lists of genomic regions as input rather than lists of genes, and first associate these chromosome regions with their corresponding genes. These tools perform a procedure called genomic regions enrichment analysis, which can be useful for detecting the biological pathways related to a set of chromosome regions. In this brief survey, we analyze six tools for genomic regions enrichment analysis (BEHST, g:Profiler g:GOSt, GREAT, LOLA, Poly-Enrich, and ReactomePA), outlining and comparing their main features. Our comparison results indicate that the inclusion of data for regulatory elements, such as ChIP-seq, is common among these tools and could therefore improve the enrichment analysis results. |
---|