Cargando…

Effects of argon plasma and aging on the mechanical properties and phase transformation of 3Y-TZP zirconia

To evaluate the flexural strength (FS) and flexural modulus (FM) of a commercial 3Y-TZ0P ceramic after artificial aging and either without or with two application times of non-thermal plasma treatments (NTP). In addition, changes in crystalline phase transformation and surface nano-topography after...

Descripción completa

Detalles Bibliográficos
Autores principales: Negreiros, William Matthew, Cotta, Monica Alonso, Rueggeberg, Frederick Allen, Bonvent, Jean Jacques, Nascimento, Fabio Dupart, Giannini, Marcelo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Fundação Odontológica de Ribeirão Preto 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645163/
https://www.ncbi.nlm.nih.gov/pubmed/36287491
http://dx.doi.org/10.1590/0103-6440202204849
Descripción
Sumario:To evaluate the flexural strength (FS) and flexural modulus (FM) of a commercial 3Y-TZ0P ceramic after artificial aging and either without or with two application times of non-thermal plasma treatments (NTP). In addition, changes in crystalline phase transformation and surface nano-topography after NTP application, during different aging periods, were evaluated. Ninety 3Y-TZP bars (45x4x3 mm) were made for FS and FM testing, and assigned to nine groups (n=10): no NTP/no aging (Control); no NTP/4h aging; no NTP/30h aging; 10s NTP/no aging; 10s NTP/4h aging; 10s NTP/30h aging; 60s NTP/no aging; 60s NTP/4h aging and 60s NTP/30h aging. Artificial accelerated aging was simulated using an autoclave (134º C at 2 bar) for up to 30h. FS and FM were assessed using a universal testing machine and data analyzed using a ANOVA and Tukey test (α=0.05). The volume change in zirconia monoclinic phase (MPV) was evaluated using X-ray diffraction and surface nano-topography was assessed using atomic force microscopy (baseline until 30h-aging). NTP application did not influence the FS and FM of zirconia. Compared to the Control (no NTP/no aging), the FS of zirconia samples treated for 30 hours in autoclave (“no NTP/30h aging” group) increased. Artificial aging for 30 hours significantly increased the FM of zirconia, regardless of NTP application. MPV tended to increase following the increase in aging time, which might result in the surface irregularities observed at 30h-aging. NTP did not alter the zirconia properties tested, but 30h-aging can change the zirconia FS, FM and MPV.