Cargando…
Rapidly identifying new coronavirus mutations of potential concern in the Omicron variant using an unsupervised learning strategy
Extensive mutations in the Omicron spike protein appear to accelerate the transmission of SARS-CoV-2, and rapid infections increase the odds that additional mutants will emerge. To build an investigative framework, we have applied an unsupervised machine learning approach to 4296 Omicron viral genom...
Autores principales: | Zhao, Lue Ping, Lybrand, Terry P., Gilbert, Peter B., Payne, Thomas H., Pyo, Chul-Woo, Geraghty, Daniel E., Jerome, Keith R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645309/ https://www.ncbi.nlm.nih.gov/pubmed/36352021 http://dx.doi.org/10.1038/s41598-022-23342-2 |
Ejemplares similares
-
Rapidly Identifying New Coronavirus Mutations of Potential Concern in the Omicron Variant Using an Unsupervised Learning Strategy
por: Zhao, Lue Ping, et al.
Publicado: (2022) -
Application of Statistical Learning to Identify Omicron Mutations in SARS-CoV-2 Viral Genome Sequence Data From Populations in Africa and the United States
por: Zhao, Lue Ping, et al.
Publicado: (2022) -
Using Haplotype-Based Artificial Intelligence to Evaluate SARS-CoV-2 Novel Variants and Mutations
por: Zhao, Lue Ping, et al.
Publicado: (2023) -
Tracking SARS-CoV-2 Spike Protein Mutations in the United States (January 2020—March 2021) Using a Statistical Learning Strategy
por: Zhao, Lue Ping, et al.
Publicado: (2021) -
Tracking SARS-CoV-2 Spike Protein Mutations in the United States (2020/01 – 2021/03) Using a Statistical Learning Strategy
por: Zhao, Lue Ping, et al.
Publicado: (2021)