Cargando…

Ten-step asymmetric total syntheses of potent antibiotics anthracimycin and anthracimycin B

The increase in antibiotic resistance calls for the development of novel antibiotics with new molecular structures and new modes of action. However, in the past few decades only a few novel antibiotics have been discovered and progressed into clinically used drugs. The discovery of a potent anthraci...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Peilin, Ye, Wenkang, Zhang, Xiayan, Tong, Yi, Qian, Pei-Yuan, Tong, Rongbiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645392/
https://www.ncbi.nlm.nih.gov/pubmed/36519065
http://dx.doi.org/10.1039/d2sc05049h
Descripción
Sumario:The increase in antibiotic resistance calls for the development of novel antibiotics with new molecular structures and new modes of action. However, in the past few decades only a few novel antibiotics have been discovered and progressed into clinically used drugs. The discovery of a potent anthracimycin antibiotic represents a major advance in the field of antibiotics. Anthracimycin is a structurally novel macrolide natural product with an excellent biological activity profile: (i) potent in vitro antibacterial activity (MIC 0.03–1.0 μg mL(−1)) against many methicillin-resistant Staphylococcus aureus (MRSA) strains, Bacillus anthracis (anthrax), and Mycobacterium tuberculosis; (ii) low toxicity to human cells (IC(50) > 30 μM); (iii) a novel mechanism of action (inhibiting DNA/RNA synthesis). While the first total synthesis of anthracimycin was elegantly accomplished by Brimble et al. with 20 steps, we report a 10-step asymmetric total synthesis of anthracimycin and anthracimycin B (first total synthesis). Our convergent strategy features (i) one-pot sequential Mukaiyama vinylogous aldol/intramolecular Diels–Alder reaction to construct trans-decalin with high yield and excellent endo/exo selectivity and (ii) Z-selective ring-closing metathesis to forge the 14-membered ring. In vitro antibacterial evaluation suggested that our synthetic samples exhibited similar antibacterial potency to the naturally occurring anthracimycins against Gram-positive strains. Our short and reliable synthetic route provides a supply of anthracimycins for further in-depth studies and allows medicinal chemists to prepare a library of analogues for establishing structure–activity relationships.