Cargando…

Resistance and phylogeny guided discovery reveals structural novelty of tetracycline antibiotics

Tetracyclines are a class of antibiotics that exhibited potent activity against a wide range of Gram-positive and Gram-negative bacteria, yet only five members were isolated from actinobacteria, with two of them approved as clinical drugs. In this work, we developed a genome mining strategy using a...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Ling Yu, Hu, Yi Ling, Sun, Jia Lin, Yu, Long Bo, Shi, Jing, Wang, Zi Ru, Guo, Zhi Kai, Zhang, Bo, Guo, Wen Jie, Tan, Ren Xiang, Ge, Hui Ming
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645399/
https://www.ncbi.nlm.nih.gov/pubmed/36519048
http://dx.doi.org/10.1039/d2sc03965f
Descripción
Sumario:Tetracyclines are a class of antibiotics that exhibited potent activity against a wide range of Gram-positive and Gram-negative bacteria, yet only five members were isolated from actinobacteria, with two of them approved as clinical drugs. In this work, we developed a genome mining strategy using a TetR/MarR-transporter, a pair of common resistance enzymes in tetracycline biosynthesis, as probes to find the potential tetracycline gene clusters in the actinobacteria genome database. Further refinement using the phylogenetic analysis of chain length factors resulted in the discovery of 25 distinct tetracycline gene clusters, which finally resulted in the isolation and characterization of a novel tetracycline, hainancycline (1). Through genetic and biochemical studies, we elucidated the biosynthetic pathway of 1, which involves a complex glycosylation process. Our work discloses nature's huge capacity to generate diverse tetracyclines and expands the chemical diversity of tetracyclines.