Cargando…
A Deep Learning Pipeline to Automate High-Resolution Arterial Segmentation With or Without Intravenous Contrast
Existing methods to reconstruct vascular structures from a computerized tomography (CT) angiogram rely on contrast injection to enhance the radio-density within the vessel lumen. However, pathological changes in the vasculature may be present that prevent accurate reconstruction. In aortic aneurysma...
Autores principales: | Chandrashekar, Anirudh, Handa, Ashok, Shivakumar, Natesh, Lapolla, Pierfrancesco, Uberoi, Raman, Grau, Vicente, Lee, Regent |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645535/ https://www.ncbi.nlm.nih.gov/pubmed/33234786 http://dx.doi.org/10.1097/SLA.0000000000004595 |
Ejemplares similares
-
A Deep Learning Approach to Visualize Aortic Aneurysm Morphology Without the Use of Intravenous Contrast Agents
por: Chandrashekar, Anirudh, et al.
Publicado: (2023) -
Prediction of Abdominal Aortic Aneurysm Growth Using Geometric Assessment of Computerized Tomography Images Acquired During the Aneurysm Surveillance Period
por: Chandrashekar, Anirudh, et al.
Publicado: (2023) -
A deep learning pipeline to simulate fluorodeoxyglucose (FDG) uptake in head and neck cancers using non-contrast CT images without the administration of radioactive tracer
por: Chandrashekar, Anirudh, et al.
Publicado: (2022) -
The role of dipeptidyl peptidase-IV in abdominal aortic aneurysm
pathogenesis: A systematic review
por: Ngetich, Elisha, et al.
Publicado: (2021) -
Development of a novel index to characterise arterial dynamics using ultrasound imaging
por: Ward, Joel, et al.
Publicado: (2021)