Cargando…

The void formation behaviors in working solid-state Li metal batteries

The fundamental understanding of the elusive evolution behavior of the buried solid-solid interfaces is the major barrier to exploring solid-state electrochemical devices. Here, we uncover the interfacial void evolution principles in solid-state batteries, build a solid-state void nucleation and gro...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Yang, Zhao, Chen-Zi, Hu, Jiang-Kui, Sun, Shuo, Yuan, Hong, Fu, Zhong-Heng, Chen, Xiang, Huang, Jia-Qi, Ouyang, Minggao, Zhang, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645723/
https://www.ncbi.nlm.nih.gov/pubmed/36351020
http://dx.doi.org/10.1126/sciadv.add0510
_version_ 1784827016305967104
author Lu, Yang
Zhao, Chen-Zi
Hu, Jiang-Kui
Sun, Shuo
Yuan, Hong
Fu, Zhong-Heng
Chen, Xiang
Huang, Jia-Qi
Ouyang, Minggao
Zhang, Qiang
author_facet Lu, Yang
Zhao, Chen-Zi
Hu, Jiang-Kui
Sun, Shuo
Yuan, Hong
Fu, Zhong-Heng
Chen, Xiang
Huang, Jia-Qi
Ouyang, Minggao
Zhang, Qiang
author_sort Lu, Yang
collection PubMed
description The fundamental understanding of the elusive evolution behavior of the buried solid-solid interfaces is the major barrier to exploring solid-state electrochemical devices. Here, we uncover the interfacial void evolution principles in solid-state batteries, build a solid-state void nucleation and growth model, and make an analogy with the bubble formation in liquid phases. In solid-state lithium metal batteries, the lithium stripping–induced interfacial void formation determines the morphological instabilities that result in battery failure. The void-induced contact loss processes are quantified in a phase diagram under wide current densities ranging from 1.0 to 10.0 milliamperes per square centimeter by rational electrochemistry calculations. The in situ–visualized morphological evolutions reveal the microscopic features of void defects under different stripping circumstances. The electrochemical-morphological relationship helps to elucidate the current density– and areal capacity–dependent void nucleation and growth mechanisms, which affords fresh insights on understanding and designing solid-solid interfaces for advanced solid-state batteries.
format Online
Article
Text
id pubmed-9645723
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-96457232022-11-21 The void formation behaviors in working solid-state Li metal batteries Lu, Yang Zhao, Chen-Zi Hu, Jiang-Kui Sun, Shuo Yuan, Hong Fu, Zhong-Heng Chen, Xiang Huang, Jia-Qi Ouyang, Minggao Zhang, Qiang Sci Adv Physical and Materials Sciences The fundamental understanding of the elusive evolution behavior of the buried solid-solid interfaces is the major barrier to exploring solid-state electrochemical devices. Here, we uncover the interfacial void evolution principles in solid-state batteries, build a solid-state void nucleation and growth model, and make an analogy with the bubble formation in liquid phases. In solid-state lithium metal batteries, the lithium stripping–induced interfacial void formation determines the morphological instabilities that result in battery failure. The void-induced contact loss processes are quantified in a phase diagram under wide current densities ranging from 1.0 to 10.0 milliamperes per square centimeter by rational electrochemistry calculations. The in situ–visualized morphological evolutions reveal the microscopic features of void defects under different stripping circumstances. The electrochemical-morphological relationship helps to elucidate the current density– and areal capacity–dependent void nucleation and growth mechanisms, which affords fresh insights on understanding and designing solid-solid interfaces for advanced solid-state batteries. American Association for the Advancement of Science 2022-11-09 /pmc/articles/PMC9645723/ /pubmed/36351020 http://dx.doi.org/10.1126/sciadv.add0510 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Physical and Materials Sciences
Lu, Yang
Zhao, Chen-Zi
Hu, Jiang-Kui
Sun, Shuo
Yuan, Hong
Fu, Zhong-Heng
Chen, Xiang
Huang, Jia-Qi
Ouyang, Minggao
Zhang, Qiang
The void formation behaviors in working solid-state Li metal batteries
title The void formation behaviors in working solid-state Li metal batteries
title_full The void formation behaviors in working solid-state Li metal batteries
title_fullStr The void formation behaviors in working solid-state Li metal batteries
title_full_unstemmed The void formation behaviors in working solid-state Li metal batteries
title_short The void formation behaviors in working solid-state Li metal batteries
title_sort void formation behaviors in working solid-state li metal batteries
topic Physical and Materials Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645723/
https://www.ncbi.nlm.nih.gov/pubmed/36351020
http://dx.doi.org/10.1126/sciadv.add0510
work_keys_str_mv AT luyang thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT zhaochenzi thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT hujiangkui thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT sunshuo thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT yuanhong thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT fuzhongheng thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT chenxiang thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT huangjiaqi thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT ouyangminggao thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT zhangqiang thevoidformationbehaviorsinworkingsolidstatelimetalbatteries
AT luyang voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT zhaochenzi voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT hujiangkui voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT sunshuo voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT yuanhong voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT fuzhongheng voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT chenxiang voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT huangjiaqi voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT ouyangminggao voidformationbehaviorsinworkingsolidstatelimetalbatteries
AT zhangqiang voidformationbehaviorsinworkingsolidstatelimetalbatteries