Cargando…
The void formation behaviors in working solid-state Li metal batteries
The fundamental understanding of the elusive evolution behavior of the buried solid-solid interfaces is the major barrier to exploring solid-state electrochemical devices. Here, we uncover the interfacial void evolution principles in solid-state batteries, build a solid-state void nucleation and gro...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645723/ https://www.ncbi.nlm.nih.gov/pubmed/36351020 http://dx.doi.org/10.1126/sciadv.add0510 |
_version_ | 1784827016305967104 |
---|---|
author | Lu, Yang Zhao, Chen-Zi Hu, Jiang-Kui Sun, Shuo Yuan, Hong Fu, Zhong-Heng Chen, Xiang Huang, Jia-Qi Ouyang, Minggao Zhang, Qiang |
author_facet | Lu, Yang Zhao, Chen-Zi Hu, Jiang-Kui Sun, Shuo Yuan, Hong Fu, Zhong-Heng Chen, Xiang Huang, Jia-Qi Ouyang, Minggao Zhang, Qiang |
author_sort | Lu, Yang |
collection | PubMed |
description | The fundamental understanding of the elusive evolution behavior of the buried solid-solid interfaces is the major barrier to exploring solid-state electrochemical devices. Here, we uncover the interfacial void evolution principles in solid-state batteries, build a solid-state void nucleation and growth model, and make an analogy with the bubble formation in liquid phases. In solid-state lithium metal batteries, the lithium stripping–induced interfacial void formation determines the morphological instabilities that result in battery failure. The void-induced contact loss processes are quantified in a phase diagram under wide current densities ranging from 1.0 to 10.0 milliamperes per square centimeter by rational electrochemistry calculations. The in situ–visualized morphological evolutions reveal the microscopic features of void defects under different stripping circumstances. The electrochemical-morphological relationship helps to elucidate the current density– and areal capacity–dependent void nucleation and growth mechanisms, which affords fresh insights on understanding and designing solid-solid interfaces for advanced solid-state batteries. |
format | Online Article Text |
id | pubmed-9645723 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96457232022-11-21 The void formation behaviors in working solid-state Li metal batteries Lu, Yang Zhao, Chen-Zi Hu, Jiang-Kui Sun, Shuo Yuan, Hong Fu, Zhong-Heng Chen, Xiang Huang, Jia-Qi Ouyang, Minggao Zhang, Qiang Sci Adv Physical and Materials Sciences The fundamental understanding of the elusive evolution behavior of the buried solid-solid interfaces is the major barrier to exploring solid-state electrochemical devices. Here, we uncover the interfacial void evolution principles in solid-state batteries, build a solid-state void nucleation and growth model, and make an analogy with the bubble formation in liquid phases. In solid-state lithium metal batteries, the lithium stripping–induced interfacial void formation determines the morphological instabilities that result in battery failure. The void-induced contact loss processes are quantified in a phase diagram under wide current densities ranging from 1.0 to 10.0 milliamperes per square centimeter by rational electrochemistry calculations. The in situ–visualized morphological evolutions reveal the microscopic features of void defects under different stripping circumstances. The electrochemical-morphological relationship helps to elucidate the current density– and areal capacity–dependent void nucleation and growth mechanisms, which affords fresh insights on understanding and designing solid-solid interfaces for advanced solid-state batteries. American Association for the Advancement of Science 2022-11-09 /pmc/articles/PMC9645723/ /pubmed/36351020 http://dx.doi.org/10.1126/sciadv.add0510 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited. |
spellingShingle | Physical and Materials Sciences Lu, Yang Zhao, Chen-Zi Hu, Jiang-Kui Sun, Shuo Yuan, Hong Fu, Zhong-Heng Chen, Xiang Huang, Jia-Qi Ouyang, Minggao Zhang, Qiang The void formation behaviors in working solid-state Li metal batteries |
title | The void formation behaviors in working solid-state Li metal batteries |
title_full | The void formation behaviors in working solid-state Li metal batteries |
title_fullStr | The void formation behaviors in working solid-state Li metal batteries |
title_full_unstemmed | The void formation behaviors in working solid-state Li metal batteries |
title_short | The void formation behaviors in working solid-state Li metal batteries |
title_sort | void formation behaviors in working solid-state li metal batteries |
topic | Physical and Materials Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645723/ https://www.ncbi.nlm.nih.gov/pubmed/36351020 http://dx.doi.org/10.1126/sciadv.add0510 |
work_keys_str_mv | AT luyang thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT zhaochenzi thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT hujiangkui thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT sunshuo thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT yuanhong thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT fuzhongheng thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT chenxiang thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT huangjiaqi thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT ouyangminggao thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT zhangqiang thevoidformationbehaviorsinworkingsolidstatelimetalbatteries AT luyang voidformationbehaviorsinworkingsolidstatelimetalbatteries AT zhaochenzi voidformationbehaviorsinworkingsolidstatelimetalbatteries AT hujiangkui voidformationbehaviorsinworkingsolidstatelimetalbatteries AT sunshuo voidformationbehaviorsinworkingsolidstatelimetalbatteries AT yuanhong voidformationbehaviorsinworkingsolidstatelimetalbatteries AT fuzhongheng voidformationbehaviorsinworkingsolidstatelimetalbatteries AT chenxiang voidformationbehaviorsinworkingsolidstatelimetalbatteries AT huangjiaqi voidformationbehaviorsinworkingsolidstatelimetalbatteries AT ouyangminggao voidformationbehaviorsinworkingsolidstatelimetalbatteries AT zhangqiang voidformationbehaviorsinworkingsolidstatelimetalbatteries |