Cargando…
STEPS 4.0: Fast and memory-efficient molecular simulations of neurons at the nanoscale
Recent advances in computational neuroscience have demonstrated the usefulness and importance of stochastic, spatial reaction-diffusion simulations. However, ever increasing model complexity renders traditional serial solvers, as well as naive parallel implementations, inadequate. This paper introdu...
Autores principales: | Chen, Weiliang, Carel, Tristan, Awile, Omar, Cantarutti, Nicola, Castiglioni, Giacomo, Cattabiani, Alessandro, Del Marmol, Baudouin, Hepburn, Iain, King, James G., Kotsalos, Christos, Kumbhar, Pramod, Lallouette, Jules, Melchior, Samuel, Schürmann, Felix, De Schutter, Erik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9645802/ https://www.ncbi.nlm.nih.gov/pubmed/36387588 http://dx.doi.org/10.3389/fninf.2022.883742 |
Ejemplares similares
-
An Optimizing Multi-platform Source-to-source Compiler Framework for the NEURON MODeling Language
por: Kumbhar, Pramod, et al.
Publicado: (2020) -
SBML and MathML support for the stochastic reaction-diffusion simulator STEPS
por: Hepburn, Iain, et al.
Publicado: (2011) -
Improving performance of the STochastic Engine for Pathway Simulation (STEPS)
por: Chen, Weiliang, et al.
Publicado: (2011) -
Tetrahedral mesh generation and visualization for stochastic reaction-diffusion simulation
por: Chen, Weiliang, et al.
Publicado: (2010) -
Accurate approximation and MPI parallelization of spatial stochastic reaction-diffusion in STEPS
por: Hepburn, Iain, et al.
Publicado: (2014)