Cargando…
Prediction of micro-hardness in thread rolling of St37 by convolutional neural networks and transfer learning
This study introduces a non-destructive method by applying convolutional neural networks (CNN) to predict the micro-hardness of the thread-rolled steel. Material microstructure images were collected for our research, and micro-hardness tests were conducted to label the extracted microstructure image...
Autores principales: | Soleymani, Mehdi, Khoshnevisan, Mohammad, Davoodi, Behnam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646279/ https://www.ncbi.nlm.nih.gov/pubmed/36407575 http://dx.doi.org/10.1007/s00170-022-10355-4 |
Ejemplares similares
-
The Detection of Thread Roll’s Margin Based on Computer Vision
por: Shi, Zhiwei, et al.
Publicado: (2021) -
Learning in Convolutional Neural Networks Accelerated by Transfer Entropy
por: Moldovan, Adrian, et al.
Publicado: (2021) -
Influence of Processing Parameters on the Thread and Spline Synchronous Rolling Process: An Experimental Study
por: Zhang, Da-Wei, et al.
Publicado: (2019) -
Micro-Doppler Based Classification of Human Aquatic Activities via Transfer Learning of Convolutional Neural Networks
por: Park, Jinhee, et al.
Publicado: (2016) -
Multi-Fault Classification and Diagnosis of Rolling Bearing Based on Improved Convolution Neural Network
por: Zhang, Xiong, et al.
Publicado: (2023)