Cargando…
Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation
BACKGROUND: Renal transplantation can significantly improve the survival rate and quality of life of patients with end-stage renal disease, but the probability of acute rejection (AR) in adult renal transplant recipients is still approximately 12.2%. Machine learning (ML) is superior to traditional...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646319/ https://www.ncbi.nlm.nih.gov/pubmed/36393969 http://dx.doi.org/10.1155/2022/6575052 |
_version_ | 1784827138557345792 |
---|---|
author | Lu, Zechao Tang, Fucai Li, Zhibiao Xie, Zhixin Zheng, Hanxiong Zhang, Jishen Gao, Yanchun Lu, Zechu Cai, Yueqiao Lai, Yongchang He, Zhaohui |
author_facet | Lu, Zechao Tang, Fucai Li, Zhibiao Xie, Zhixin Zheng, Hanxiong Zhang, Jishen Gao, Yanchun Lu, Zechu Cai, Yueqiao Lai, Yongchang He, Zhaohui |
author_sort | Lu, Zechao |
collection | PubMed |
description | BACKGROUND: Renal transplantation can significantly improve the survival rate and quality of life of patients with end-stage renal disease, but the probability of acute rejection (AR) in adult renal transplant recipients is still approximately 12.2%. Machine learning (ML) is superior to traditional statistical methods in various clinical scenarios. However, the current AR model is constructed only through simple difference analysis or a single queue, which cannot guarantee the accuracy of prediction. Therefore, this study identified and validated new gene sets that contribute to the early prediction of AR and the prognosis prediction of patients after renal transplantation by constructing a more accurate AR gene signature through ML technology. METHODS: Based on the Gene Expression Omnibus (GEO) database and multiple bioinformatic analyses, we identified differentially expressed genes (DEGs) and built a gene signature via LASSO regression and SVM analysis. Immune cell infiltration and immunocyte association analyses were also conducted. Furthermore, we investigated the relationship between AR genes and graft survival status. RESULTS: Twenty-four DEGs were identified. A 5 gene signature (CPA6, EFNA1, HBM, THEM5, and ZNF683) were obtained by LASSO analysis and SVM analysis, which had a satisfied ability to differentiate AR and NAR in the training cohort, internal validation cohort and external validation cohort. Additionally, ZNF683 was associated with graft survival. CONCLUSION: A 5 gene signature, particularly ZNF683, provided insight into a precise therapeutic schedule and clinical applications for AR patients. |
format | Online Article Text |
id | pubmed-9646319 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-96463192022-11-15 Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation Lu, Zechao Tang, Fucai Li, Zhibiao Xie, Zhixin Zheng, Hanxiong Zhang, Jishen Gao, Yanchun Lu, Zechu Cai, Yueqiao Lai, Yongchang He, Zhaohui Dis Markers Research Article BACKGROUND: Renal transplantation can significantly improve the survival rate and quality of life of patients with end-stage renal disease, but the probability of acute rejection (AR) in adult renal transplant recipients is still approximately 12.2%. Machine learning (ML) is superior to traditional statistical methods in various clinical scenarios. However, the current AR model is constructed only through simple difference analysis or a single queue, which cannot guarantee the accuracy of prediction. Therefore, this study identified and validated new gene sets that contribute to the early prediction of AR and the prognosis prediction of patients after renal transplantation by constructing a more accurate AR gene signature through ML technology. METHODS: Based on the Gene Expression Omnibus (GEO) database and multiple bioinformatic analyses, we identified differentially expressed genes (DEGs) and built a gene signature via LASSO regression and SVM analysis. Immune cell infiltration and immunocyte association analyses were also conducted. Furthermore, we investigated the relationship between AR genes and graft survival status. RESULTS: Twenty-four DEGs were identified. A 5 gene signature (CPA6, EFNA1, HBM, THEM5, and ZNF683) were obtained by LASSO analysis and SVM analysis, which had a satisfied ability to differentiate AR and NAR in the training cohort, internal validation cohort and external validation cohort. Additionally, ZNF683 was associated with graft survival. CONCLUSION: A 5 gene signature, particularly ZNF683, provided insight into a precise therapeutic schedule and clinical applications for AR patients. Hindawi 2022-11-02 /pmc/articles/PMC9646319/ /pubmed/36393969 http://dx.doi.org/10.1155/2022/6575052 Text en Copyright © 2022 Zechao Lu et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Lu, Zechao Tang, Fucai Li, Zhibiao Xie, Zhixin Zheng, Hanxiong Zhang, Jishen Gao, Yanchun Lu, Zechu Cai, Yueqiao Lai, Yongchang He, Zhaohui Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation |
title | Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation |
title_full | Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation |
title_fullStr | Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation |
title_full_unstemmed | Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation |
title_short | Characteristic Genes and Immune Infiltration Analysis for Acute Rejection after Kidney Transplantation |
title_sort | characteristic genes and immune infiltration analysis for acute rejection after kidney transplantation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646319/ https://www.ncbi.nlm.nih.gov/pubmed/36393969 http://dx.doi.org/10.1155/2022/6575052 |
work_keys_str_mv | AT luzechao characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT tangfucai characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT lizhibiao characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT xiezhixin characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT zhenghanxiong characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT zhangjishen characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT gaoyanchun characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT luzechu characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT caiyueqiao characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT laiyongchang characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation AT hezhaohui characteristicgenesandimmuneinfiltrationanalysisforacuterejectionafterkidneytransplantation |