Cargando…

New multiple sclerosis lesion segmentation and detection using pre-activation U-Net

Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. I...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashtari, Pooya, Barile, Berardino, Van Huffel, Sabine, Sappey-Marinier, Dominique
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646406/
https://www.ncbi.nlm.nih.gov/pubmed/36389254
http://dx.doi.org/10.3389/fnins.2022.975862
Descripción
Sumario:Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. In this paper, we propose Pre-U-Net, a 3D encoder-decoder architecture with pre-activation residual blocks, for the segmentation and detection of new MS lesions. Due to the limited training set and the class imbalance problem, we apply intensive data augmentation and use deep supervision to train our models effectively. Following the same U-shaped architecture but different blocks, Pre-U-Net outperforms U-Net and Res-U-Net on the MSSEG-2 dataset, achieving a Dice score of 40.3% on new lesion segmentation and an F(1) score of 48.1% on new lesion detection. The codes and trained models are publicly available at https://github.com/pashtari/xunet.