Cargando…
New multiple sclerosis lesion segmentation and detection using pre-activation U-Net
Automated segmentation of new multiple sclerosis (MS) lesions in 3D MRI data is an essential prerequisite for monitoring and quantifying MS progression. Manual delineation of such lesions is time-consuming and expensive, especially because raters need to deal with 3D images and several modalities. I...
Autores principales: | Ashtari, Pooya, Barile, Berardino, Van Huffel, Sabine, Sappey-Marinier, Dominique |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646406/ https://www.ncbi.nlm.nih.gov/pubmed/36389254 http://dx.doi.org/10.3389/fnins.2022.975862 |
Ejemplares similares
-
Classification of multiple sclerosis clinical profiles using machine learning and grey matter connectome
por: Barile, Berardino, et al.
Publicado: (2022) -
Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features
por: Ion-Mărgineanu, Adrian, et al.
Publicado: (2017) -
Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks
por: Marzullo, Aldo, et al.
Publicado: (2019) -
Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses
por: Kocevar, Gabriel, et al.
Publicado: (2016) -
3D U-Net for automated detection of multiple sclerosis lesions: utility of transfer learning from other pathologies
por: Wahlig, Stephen G., et al.
Publicado: (2023)