Cargando…

Inherited antithrombin deficiency caused by a mutation in the SERPINC1 gene: A case report

Inherited antithrombin deficiency (ATD) is a major cause of thrombotic deficiency. Genetic testing is of great value in the diagnosis of hereditary thrombophilia. Herein, we report a case of inherited ATD admitted to our hospital. We include the results of genealogy and discuss the significance of g...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Xinwei, Zhang, Kairu, Wu, Qian, Zhang, Mingyuan, Li, Li, Li, Hongwei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646493/
https://www.ncbi.nlm.nih.gov/pubmed/36343066
http://dx.doi.org/10.1097/MD.0000000000031240
Descripción
Sumario:Inherited antithrombin deficiency (ATD) is a major cause of thrombotic deficiency. Genetic testing is of great value in the diagnosis of hereditary thrombophilia. Herein, we report a case of inherited ATD admitted to our hospital. We include the results of genealogy and discuss the significance of genetic testing in high-risk groups of hereditary thrombophilia. PATIENT CONCERNS: A 16-year-old male patient presented with chest tightness, shortness of breath, wheezing, and intermittent fever (up to 39 °C) after strenuous exercise for 2 weeks. He also had a cough with white sputum with a small amount of bright red blood in the sputum and occasional back pain. DIAGNOSES: The blood tests showed that the patient’s antithrombin III concentration and activity were both significantly reduced to 41% and 43.2%, respectively. Enhanced chest computed tomography scans showed pulmonary infarction in the lower lobe of the right lung with multiple embolisms in the bilateral pulmonary arteries and branches. Lower vein angiography revealed a contrast-filling defect of the inferior vena cava and left common iliac vein. Thrombosis was considered as a differential diagnosis. His father and his uncle also had a history of thrombosis. The patient was diagnosed with inherited ATD. Further, peripheral venous blood samples of the family members were collected for whole-exome gene sequencing, and Sanger sequencing was used to verify the gene mutation site in the family. The patient and his father had a SERPINC1 gene duplication mutation: c.1315_1345dupCCTTTCCTGGTTTTTAAGAGAAGTTCCTC (NM000488.4). INTERVENTIONS: An inferior vena cava filter was inserted to avoid thrombus shedding from the lower limbs. Urokinase was injected intermittently through the femoral vein cannula for thrombolysis. Heparin combined with warfarin anticoagulant therapy was sequentially administered. After reaching the international normalized ratio, heparin was discontinued, and oral warfarin anticoagulant therapy was continued. After discharge, the patient was switched to rivaroxaban as oral anticoagulation therapy. OUTCOMES: The patient’s clinical symptoms disappeared. reexamination showed that the thrombotic load was less than before, and the inferior vena cava filter was then removed. LESSONS: By this report we highlight that gene detection and phenotypic analysis are important means to study inherited ATD.