Cargando…

RHBDL2 promotes the proliferation, migration, and invasion of pancreatic cancer by stabilizing the N1ICD via the OTUD7B and activating the Notch signaling pathway

Pancreatic cancer (PC) is one of the most malignant types of cancer, and is characterized by early metastasis, limited response to chemotherapeutics, and poor prognosis. Therefore, there is an urgent need to explore new therapeutic strategies for PC treatment. Human rhomboid-like 2 (RHBDL2) is diffe...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shiyu, Cai, Kun, Zheng, Dijie, Liu, Yanqing, Li, Lin, He, Zhiwei, Sun, Chengyi, Yu, Chao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646733/
https://www.ncbi.nlm.nih.gov/pubmed/36351890
http://dx.doi.org/10.1038/s41419-022-05379-3
Descripción
Sumario:Pancreatic cancer (PC) is one of the most malignant types of cancer, and is characterized by early metastasis, limited response to chemotherapeutics, and poor prognosis. Therefore, there is an urgent need to explore new therapeutic strategies for PC treatment. Human rhomboid-like 2 (RHBDL2) is differentially expressed in cervical and breast cancer. However, the correlation between RHBDL2 and PC remains unclear. We found that RHBDL2 is highly expressed in human PC cells and tissues and is significantly associated with distant metastasis and poor survival of patients with PC. Gain- and loss-of-function assays indicated that RHBDL2 could accelerate PC cell proliferation and mobility in vitro and in vivo. The RNA-Seq results suggest that RHBDL2 may be involved in the activation of Notch signaling pathway. IMR-1 could restore the proliferation and metastatic capacity of PC cells mediated by RHBDL2. RHBDL2 interacted with and cleaved Notch1, resulting in the release of N1ICD. RHBDL2 decreased the ubiquitination level of N1ICD and collaborated with Ovarian tumor domain-containing 7B (OTUD7B) to stabilize N1ICD via the ubiquitin-proteasome pathway. RHBDL2 facilitated PC cell proliferation and mobility by stabilizing the N1ICD via the OTUD7B and activating the Notch signaling pathway. Thus, targeting this novel pathway may be a potential therapeutic strategy for PC.