Cargando…
Porcine placental extract increase the cellular NAD levels in human epidermal keratinocytes
Nicotinamide adenine dinucleotide (NAD) is an essential cofactor for numerous enzymes involved in energy metabolism. Because decreasing NAD levels is a common hallmark of the aging process in various tissues and organs, maintaining NAD levels has recently been of interest for the prevention of aging...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646745/ https://www.ncbi.nlm.nih.gov/pubmed/36352014 http://dx.doi.org/10.1038/s41598-022-23446-9 |
Sumario: | Nicotinamide adenine dinucleotide (NAD) is an essential cofactor for numerous enzymes involved in energy metabolism. Because decreasing NAD levels is a common hallmark of the aging process in various tissues and organs, maintaining NAD levels has recently been of interest for the prevention of aging and age-related diseases. Although placental extract (PE) are known to possess several anti-aging effects, the NAD-boosting activity of PE remains unknown. In this study, we found that porcine PE (PPE) significantly increased intracellular NAD levels in normal human epidermal keratinocytes (NHEKs). PPE also attenuated the NAD depletion induced by FK866, an inhibitor of nicotinamide phosphoribosyltransferase (NAMPT). Interestingly, only the fraction containing nicotinamide mononucleotide (NMN), nicotinamide riboside (NR), and nicotinamide (NAM) restored NAD content in NHEKs in the absence of NAMPT activity. These results suggest that PPE increases intracellular NAD by providing NAD precursors such as NMN, NR, and NAM. Finally, we showed that the application of PPE to the stratum corneum of the reconstructed human epidermis significantly ameliorated FK866-induced NAD depletion, suggesting that topical PPE may be helpful for increasing skin NAD levels. This is the first study to report the novel biological activity of PE as an NAD booster in human epidermal cells. |
---|