Cargando…
Development of prognostic model for preterm birth using machine learning in a population-based cohort of Western Australia births between 1980 and 2015
Preterm birth is a global public health problem with a significant burden on the individuals affected. The study aimed to extend current research on preterm birth prognostic model development by developing and internally validating models using machine learning classification algorithms and populati...
Autores principales: | Wong, Kingsley, Tessema, Gizachew A., Chai, Kevin, Pereira, Gavin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646808/ https://www.ncbi.nlm.nih.gov/pubmed/36352095 http://dx.doi.org/10.1038/s41598-022-23782-w |
Ejemplares similares
-
Stillbirth risk prediction using machine learning for a large cohort of births from Western Australia, 1980–2015
por: Malacova, Eva, et al.
Publicado: (2020) -
Gestational age as a predictor for subsequent preterm birth in New South Wales, Australia
por: Pereira, Gavin, et al.
Publicado: (2021) -
Re-evaluation of gestational age as a predictor for subsequent preterm birth
por: Pereira, Elizabeth, et al.
Publicado: (2021) -
The influence of acculturation on the risk of preterm birth and low birthweight in migrant women residing in Western Australia
por: Mozooni, Maryam, et al.
Publicado: (2023) -
What matters to short interpregnancy intervals between pregnancies in Western Australia?
por: Tessema, Gizachew, et al.
Publicado: (2022)