Cargando…
Author Correction: Discriminant analysis and binary logistic regression enable more accurate prediction of autism spectrum disorder than principal component analysis
Autores principales: | Hassan, Wail M., Al-Dbass, Abeer, Al-Ayadhi, Laila, Bhat, Ramesa Shafi, El-Ansary, Afaf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646825/ https://www.ncbi.nlm.nih.gov/pubmed/36352027 http://dx.doi.org/10.1038/s41598-022-23620-z |
Ejemplares similares
-
Discriminant analysis and binary logistic regression enable more accurate prediction of autism spectrum disorder than principal component analysis
por: Hassan, Wail M., et al.
Publicado: (2022) -
The Fidelity of Rheumatoid Arthritis Multivariate Diagnostic Biomarkers Using Discriminant Analysis and Binary Logistic Regression
por: Hassan, Wail M., et al.
Publicado: (2023) -
Protective Effects of Bee Pollen on Multiple Propionic Acid-Induced Biochemical Autistic Features in a Rat Model
por: Alfawaz, Hanan A., et al.
Publicado: (2022) -
The neurotoxic effects of ampicillin-associated gut bacterial imbalances compared to those of orally administered propionic acid in the etiology of persistent autistic features in rat pups: effects of various dietary regimens
por: El-Ansary, Afaf, et al.
Publicado: (2015) -
Therapeutic potency of bee pollen against biochemical autistic features induced through acute and sub-acute neurotoxicity of orally administered propionic acid
por: Al-Salem, Huda S., et al.
Publicado: (2016)