Cargando…
Deep learning-based framework for slide-based histopathological image analysis
Digital pathology coupled with advanced machine learning (e.g., deep learning) has been changing the paradigm of whole-slide histopathological images (WSIs) analysis. Major applications in digital pathology using machine learning include automatic cancer classification, survival analysis, and subtyp...
Autores principales: | Kosaraju, Sai, Park, Jeongyeon, Lee, Hyun, Yang, Jung Wook, Kang, Mingon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646838/ https://www.ncbi.nlm.nih.gov/pubmed/36351997 http://dx.doi.org/10.1038/s41598-022-23166-0 |
Ejemplares similares
-
Evidential deep learning for trustworthy prediction of enzyme commission number
por: Han, So-Ra, et al.
Publicado: (2023) -
A deep learning framework for automated classification of histopathological kidney whole-slide images
por: Abdeltawab, Hisham A., et al.
Publicado: (2022) -
Deep learning-based histopathological segmentation for whole slide images of colorectal cancer in a compressed domain
por: Kim, Hyeongsub, et al.
Publicado: (2021) -
Deep learning based registration of serial whole-slide histopathology images in different stains
por: Roy, Mousumi, et al.
Publicado: (2023) -
Deep Learning-Based Classification of Uterine Cervical and Endometrial Cancer Subtypes from Whole-Slide Histopathology Images
por: Song, JaeYen, et al.
Publicado: (2022)