Cargando…
A formal validation of a deep learning-based automated workflow for the interpretation of the echocardiogram
This study compares a deep learning interpretation of 23 echocardiographic parameters—including cardiac volumes, ejection fraction, and Doppler measurements—with three repeated measurements by core lab sonographers. The primary outcome metric, the individual equivalence coefficient (IEC), compares t...
Autores principales: | Tromp, Jasper, Bauer, David, Claggett, Brian L., Frost, Matthew, Iversen, Mathias Bøtcher, Prasad, Narayana, Petrie, Mark C., Larson, Martin G., Ezekowitz, Justin A., Solomon, Scott D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9646849/ https://www.ncbi.nlm.nih.gov/pubmed/36351912 http://dx.doi.org/10.1038/s41467-022-34245-1 |
Ejemplares similares
-
Fully Automated Echocardiogram Interpretation in Clinical Practice: Feasibility and Diagnostic Accuracy
por: Zhang, Jeffrey, et al.
Publicado: (2018) -
Deep learning interpretation of echocardiograms
por: Ghorbani, Amirata, et al.
Publicado: (2020) -
Improvement of automated analysis of coronary Doppler echocardiograms
por: Bossenbroek, Jamie, et al.
Publicado: (2022) -
Artificial intelligence-assisted interpretation of systolic function by echocardiogram
por: Yamaguchi, Natsumi, et al.
Publicado: (2023) -
Automated analysis of limited echocardiograms: Feasibility and relationship to outcomes in COVID-19
por: Pellikka, Patricia A., et al.
Publicado: (2022)