Cargando…

Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries

The uncontrollable formation of Li dendrites has become the biggest obstacle to the practical application of Li-metal anodes in high-energy rechargeable Li batteries. Herein, a unique LiF interlayer woven by millimeter-level, single-crystal and serrated LiF nanofibers (NFs) was designed to enable de...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Shuangshuang, Jiang, Yalong, Ni, Shuyan, Wang, Hao, Xiong, Fangyu, Cui, Lianmeng, Pan, Xuelei, Tang, Chen, Rong, Yaoguang, An, Qinyou, Mai, Liqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647010/
https://www.ncbi.nlm.nih.gov/pubmed/36381218
http://dx.doi.org/10.1093/nsr/nwac183
_version_ 1784827289921388544
author Tan, Shuangshuang
Jiang, Yalong
Ni, Shuyan
Wang, Hao
Xiong, Fangyu
Cui, Lianmeng
Pan, Xuelei
Tang, Chen
Rong, Yaoguang
An, Qinyou
Mai, Liqiang
author_facet Tan, Shuangshuang
Jiang, Yalong
Ni, Shuyan
Wang, Hao
Xiong, Fangyu
Cui, Lianmeng
Pan, Xuelei
Tang, Chen
Rong, Yaoguang
An, Qinyou
Mai, Liqiang
author_sort Tan, Shuangshuang
collection PubMed
description The uncontrollable formation of Li dendrites has become the biggest obstacle to the practical application of Li-metal anodes in high-energy rechargeable Li batteries. Herein, a unique LiF interlayer woven by millimeter-level, single-crystal and serrated LiF nanofibers (NFs) was designed to enable dendrite-free and highly efficient Li-metal deposition. This high-conductivity LiF interlayer can increase the Li(+) transference number and induce the formation of ‘LiF–NFs-rich’ solid–electrolyte interface (SEI). In the ‘LiF–NFs-rich’ SEI, the ultra-long LiF nanofibers provide a continuously interfacial Li(+) transport path. Moreover, the formed Li–LiF interface between Li-metal and SEI film renders low Li nucleation and high Li(+) migration energy barriers, leading to uniform Li plating and stripping processes. As a result, steady charge–discharge in a Li//Li symmetrical cell for 1600 h under 4 mAh cm(−2) and 400 stable cycles under a high area capacity of 5.65 mAh cm(−2) in a high-loading Li//rGO–S cell at 17.9 mA cm(−2) could be achieved. The free-standing LiF–NFs interlayer exhibits superior advantages for commercial Li batteries and displays significant potential for expanding the applications in solid Li batteries.
format Online
Article
Text
id pubmed-9647010
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-96470102022-11-14 Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries Tan, Shuangshuang Jiang, Yalong Ni, Shuyan Wang, Hao Xiong, Fangyu Cui, Lianmeng Pan, Xuelei Tang, Chen Rong, Yaoguang An, Qinyou Mai, Liqiang Natl Sci Rev Research Article The uncontrollable formation of Li dendrites has become the biggest obstacle to the practical application of Li-metal anodes in high-energy rechargeable Li batteries. Herein, a unique LiF interlayer woven by millimeter-level, single-crystal and serrated LiF nanofibers (NFs) was designed to enable dendrite-free and highly efficient Li-metal deposition. This high-conductivity LiF interlayer can increase the Li(+) transference number and induce the formation of ‘LiF–NFs-rich’ solid–electrolyte interface (SEI). In the ‘LiF–NFs-rich’ SEI, the ultra-long LiF nanofibers provide a continuously interfacial Li(+) transport path. Moreover, the formed Li–LiF interface between Li-metal and SEI film renders low Li nucleation and high Li(+) migration energy barriers, leading to uniform Li plating and stripping processes. As a result, steady charge–discharge in a Li//Li symmetrical cell for 1600 h under 4 mAh cm(−2) and 400 stable cycles under a high area capacity of 5.65 mAh cm(−2) in a high-loading Li//rGO–S cell at 17.9 mA cm(−2) could be achieved. The free-standing LiF–NFs interlayer exhibits superior advantages for commercial Li batteries and displays significant potential for expanding the applications in solid Li batteries. Oxford University Press 2022-09-01 /pmc/articles/PMC9647010/ /pubmed/36381218 http://dx.doi.org/10.1093/nsr/nwac183 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Tan, Shuangshuang
Jiang, Yalong
Ni, Shuyan
Wang, Hao
Xiong, Fangyu
Cui, Lianmeng
Pan, Xuelei
Tang, Chen
Rong, Yaoguang
An, Qinyou
Mai, Liqiang
Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries
title Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries
title_full Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries
title_fullStr Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries
title_full_unstemmed Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries
title_short Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries
title_sort serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647010/
https://www.ncbi.nlm.nih.gov/pubmed/36381218
http://dx.doi.org/10.1093/nsr/nwac183
work_keys_str_mv AT tanshuangshuang serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT jiangyalong serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT nishuyan serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT wanghao serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT xiongfangyu serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT cuilianmeng serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT panxuelei serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT tangchen serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT rongyaoguang serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT anqinyou serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries
AT mailiqiang serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries