Cargando…
Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries
The uncontrollable formation of Li dendrites has become the biggest obstacle to the practical application of Li-metal anodes in high-energy rechargeable Li batteries. Herein, a unique LiF interlayer woven by millimeter-level, single-crystal and serrated LiF nanofibers (NFs) was designed to enable de...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647010/ https://www.ncbi.nlm.nih.gov/pubmed/36381218 http://dx.doi.org/10.1093/nsr/nwac183 |
_version_ | 1784827289921388544 |
---|---|
author | Tan, Shuangshuang Jiang, Yalong Ni, Shuyan Wang, Hao Xiong, Fangyu Cui, Lianmeng Pan, Xuelei Tang, Chen Rong, Yaoguang An, Qinyou Mai, Liqiang |
author_facet | Tan, Shuangshuang Jiang, Yalong Ni, Shuyan Wang, Hao Xiong, Fangyu Cui, Lianmeng Pan, Xuelei Tang, Chen Rong, Yaoguang An, Qinyou Mai, Liqiang |
author_sort | Tan, Shuangshuang |
collection | PubMed |
description | The uncontrollable formation of Li dendrites has become the biggest obstacle to the practical application of Li-metal anodes in high-energy rechargeable Li batteries. Herein, a unique LiF interlayer woven by millimeter-level, single-crystal and serrated LiF nanofibers (NFs) was designed to enable dendrite-free and highly efficient Li-metal deposition. This high-conductivity LiF interlayer can increase the Li(+) transference number and induce the formation of ‘LiF–NFs-rich’ solid–electrolyte interface (SEI). In the ‘LiF–NFs-rich’ SEI, the ultra-long LiF nanofibers provide a continuously interfacial Li(+) transport path. Moreover, the formed Li–LiF interface between Li-metal and SEI film renders low Li nucleation and high Li(+) migration energy barriers, leading to uniform Li plating and stripping processes. As a result, steady charge–discharge in a Li//Li symmetrical cell for 1600 h under 4 mAh cm(−2) and 400 stable cycles under a high area capacity of 5.65 mAh cm(−2) in a high-loading Li//rGO–S cell at 17.9 mA cm(−2) could be achieved. The free-standing LiF–NFs interlayer exhibits superior advantages for commercial Li batteries and displays significant potential for expanding the applications in solid Li batteries. |
format | Online Article Text |
id | pubmed-9647010 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-96470102022-11-14 Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries Tan, Shuangshuang Jiang, Yalong Ni, Shuyan Wang, Hao Xiong, Fangyu Cui, Lianmeng Pan, Xuelei Tang, Chen Rong, Yaoguang An, Qinyou Mai, Liqiang Natl Sci Rev Research Article The uncontrollable formation of Li dendrites has become the biggest obstacle to the practical application of Li-metal anodes in high-energy rechargeable Li batteries. Herein, a unique LiF interlayer woven by millimeter-level, single-crystal and serrated LiF nanofibers (NFs) was designed to enable dendrite-free and highly efficient Li-metal deposition. This high-conductivity LiF interlayer can increase the Li(+) transference number and induce the formation of ‘LiF–NFs-rich’ solid–electrolyte interface (SEI). In the ‘LiF–NFs-rich’ SEI, the ultra-long LiF nanofibers provide a continuously interfacial Li(+) transport path. Moreover, the formed Li–LiF interface between Li-metal and SEI film renders low Li nucleation and high Li(+) migration energy barriers, leading to uniform Li plating and stripping processes. As a result, steady charge–discharge in a Li//Li symmetrical cell for 1600 h under 4 mAh cm(−2) and 400 stable cycles under a high area capacity of 5.65 mAh cm(−2) in a high-loading Li//rGO–S cell at 17.9 mA cm(−2) could be achieved. The free-standing LiF–NFs interlayer exhibits superior advantages for commercial Li batteries and displays significant potential for expanding the applications in solid Li batteries. Oxford University Press 2022-09-01 /pmc/articles/PMC9647010/ /pubmed/36381218 http://dx.doi.org/10.1093/nsr/nwac183 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of China Science Publishing & Media Ltd. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Tan, Shuangshuang Jiang, Yalong Ni, Shuyan Wang, Hao Xiong, Fangyu Cui, Lianmeng Pan, Xuelei Tang, Chen Rong, Yaoguang An, Qinyou Mai, Liqiang Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries |
title | Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries |
title_full | Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries |
title_fullStr | Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries |
title_full_unstemmed | Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries |
title_short | Serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries |
title_sort | serrated lithium fluoride nanofibers-woven interlayer enables uniform lithium deposition for lithium-metal batteries |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647010/ https://www.ncbi.nlm.nih.gov/pubmed/36381218 http://dx.doi.org/10.1093/nsr/nwac183 |
work_keys_str_mv | AT tanshuangshuang serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT jiangyalong serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT nishuyan serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT wanghao serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT xiongfangyu serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT cuilianmeng serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT panxuelei serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT tangchen serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT rongyaoguang serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT anqinyou serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries AT mailiqiang serratedlithiumfluoridenanofiberswoveninterlayerenablesuniformlithiumdepositionforlithiummetalbatteries |