Cargando…

Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy

BACKGROUND AND PURPOSE: Multiple patient transfers have a nonnegligible impact on the accuracy of dose delivery for cervical cancer brachytherapy. We consider using on-site cone-beam CT (CBCT) to resolve this problem. However, CBCT clinical applications are limited due to inadequate image quality. T...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ailin, Cui, Hehe, Jiang, Xiao, Yan, Bing, Wu, Aidong, Liu, Yunqin, Zhu, Lei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647154/
https://www.ncbi.nlm.nih.gov/pubmed/36387118
http://dx.doi.org/10.3389/fonc.2022.942016
_version_ 1784827324021080064
author Wu, Ailin
Cui, Hehe
Jiang, Xiao
Yan, Bing
Wu, Aidong
Liu, Yunqin
Zhu, Lei
author_facet Wu, Ailin
Cui, Hehe
Jiang, Xiao
Yan, Bing
Wu, Aidong
Liu, Yunqin
Zhu, Lei
author_sort Wu, Ailin
collection PubMed
description BACKGROUND AND PURPOSE: Multiple patient transfers have a nonnegligible impact on the accuracy of dose delivery for cervical cancer brachytherapy. We consider using on-site cone-beam CT (CBCT) to resolve this problem. However, CBCT clinical applications are limited due to inadequate image quality. This paper implements a scatter correction method using planning CT (pCT) prior to obtaining high-quality CBCT images and evaluates the dose calculation accuracy of CBCT-guided brachytherapy for cervical cancer. MATERIALS AND METHODS: The CBCT of a self-developed female pelvis phantom and five patients was first corrected using empirical uniform scatter correction in the projection domain and further corrected in the image domain. In both phantom and patient studies, the CBCT image quality before and after scatter correction was evaluated with registered pCT (rCT). Model-based dose calculation was performed using the commercial package Acuros(®)BV. The dose distributions of rCT-based plans and corrected CBCT-based plans in the phantom and patients were compared using 3D local gamma analysis. A statistical analysis of the differences in dosimetric parameters of five patients was also performed. RESULTS: In both phantom and patient studies, the HU error of selected ROIs was reduced to less than 15 HU. Using the dose distribution of the rCT-based plan as the baseline, the γ pass rate (2%, 2 mm) of the corrected CBCT-based plan in phantom and patients all exceeded 98% and 93%, respectively, with the threshold dose set to 3, 6, 9, and 12 Gy. The average percentage deviation (APD) of D(90) of HRCTV and D(2cc) of OARs was less than 1% between rCT-based and corrected CBCT-based plans. CONCLUSION: Scatter correction using a pCT prior can effectively improve the CBCT image quality and CBCT-based cervical brachytherapy dose calculation accuracy, indicating promising prospects in both simplified brachytherapy processes and accurate brachytherapy dose delivery.
format Online
Article
Text
id pubmed-9647154
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-96471542022-11-15 Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy Wu, Ailin Cui, Hehe Jiang, Xiao Yan, Bing Wu, Aidong Liu, Yunqin Zhu, Lei Front Oncol Oncology BACKGROUND AND PURPOSE: Multiple patient transfers have a nonnegligible impact on the accuracy of dose delivery for cervical cancer brachytherapy. We consider using on-site cone-beam CT (CBCT) to resolve this problem. However, CBCT clinical applications are limited due to inadequate image quality. This paper implements a scatter correction method using planning CT (pCT) prior to obtaining high-quality CBCT images and evaluates the dose calculation accuracy of CBCT-guided brachytherapy for cervical cancer. MATERIALS AND METHODS: The CBCT of a self-developed female pelvis phantom and five patients was first corrected using empirical uniform scatter correction in the projection domain and further corrected in the image domain. In both phantom and patient studies, the CBCT image quality before and after scatter correction was evaluated with registered pCT (rCT). Model-based dose calculation was performed using the commercial package Acuros(®)BV. The dose distributions of rCT-based plans and corrected CBCT-based plans in the phantom and patients were compared using 3D local gamma analysis. A statistical analysis of the differences in dosimetric parameters of five patients was also performed. RESULTS: In both phantom and patient studies, the HU error of selected ROIs was reduced to less than 15 HU. Using the dose distribution of the rCT-based plan as the baseline, the γ pass rate (2%, 2 mm) of the corrected CBCT-based plan in phantom and patients all exceeded 98% and 93%, respectively, with the threshold dose set to 3, 6, 9, and 12 Gy. The average percentage deviation (APD) of D(90) of HRCTV and D(2cc) of OARs was less than 1% between rCT-based and corrected CBCT-based plans. CONCLUSION: Scatter correction using a pCT prior can effectively improve the CBCT image quality and CBCT-based cervical brachytherapy dose calculation accuracy, indicating promising prospects in both simplified brachytherapy processes and accurate brachytherapy dose delivery. Frontiers Media S.A. 2022-10-27 /pmc/articles/PMC9647154/ /pubmed/36387118 http://dx.doi.org/10.3389/fonc.2022.942016 Text en Copyright © 2022 Wu, Cui, Jiang, Yan, Wu, Liu and Zhu https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Wu, Ailin
Cui, Hehe
Jiang, Xiao
Yan, Bing
Wu, Aidong
Liu, Yunqin
Zhu, Lei
Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy
title Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy
title_full Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy
title_fullStr Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy
title_full_unstemmed Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy
title_short Development and validation of a scatter-corrected CBCT image-guided method for cervical cancer brachytherapy
title_sort development and validation of a scatter-corrected cbct image-guided method for cervical cancer brachytherapy
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647154/
https://www.ncbi.nlm.nih.gov/pubmed/36387118
http://dx.doi.org/10.3389/fonc.2022.942016
work_keys_str_mv AT wuailin developmentandvalidationofascattercorrectedcbctimageguidedmethodforcervicalcancerbrachytherapy
AT cuihehe developmentandvalidationofascattercorrectedcbctimageguidedmethodforcervicalcancerbrachytherapy
AT jiangxiao developmentandvalidationofascattercorrectedcbctimageguidedmethodforcervicalcancerbrachytherapy
AT yanbing developmentandvalidationofascattercorrectedcbctimageguidedmethodforcervicalcancerbrachytherapy
AT wuaidong developmentandvalidationofascattercorrectedcbctimageguidedmethodforcervicalcancerbrachytherapy
AT liuyunqin developmentandvalidationofascattercorrectedcbctimageguidedmethodforcervicalcancerbrachytherapy
AT zhulei developmentandvalidationofascattercorrectedcbctimageguidedmethodforcervicalcancerbrachytherapy