Cargando…
Non-destructive monitoring of amylose content in rice by UAV-based hyperspectral images
Amylose content (AC) is an important indicator for rice quality grading. The rapid development of unmanned aerial vehicle (UAV) technology provides rich spectral and spatial information on observed objects, making non-destructive monitoring of crop quality possible. To test the potential of UAV-base...
Autores principales: | Wang, Fumin, Yi, Qiuxiang, Xie, Lili, Yao, Xiaoping, Zheng, Jueyi, Xu, Tianyue, Li, Jiale, Chen, Siting |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647158/ https://www.ncbi.nlm.nih.gov/pubmed/36388531 http://dx.doi.org/10.3389/fpls.2022.1035379 |
Ejemplares similares
-
Rice Yield Estimation Using Parcel-Level Relative Spectral Variables From UAV-Based Hyperspectral Imagery
por: Wang, Feilong, et al.
Publicado: (2019) -
Discrepancies in resistant starch and starch physicochemical properties between rice mutants similar in high amylose content
por: Luo, Mingrui, et al.
Publicado: (2023) -
Non-destructive detection of protein content in mulberry leaves by using hyperspectral imaging
por: Li, Xunlan, et al.
Publicado: (2023) -
Comprehensive growth index monitoring of desert steppe grassland vegetation based on UAV hyperspectral
por: Liu, Xiaomin, et al.
Publicado: (2023) -
Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features
por: Sun, Xinkai, et al.
Publicado: (2023)