Cargando…
Comparative analysis of QS3D versus droplet digital PCR for quantitative measures of EGFR T790M mutation from identical plasma
OBJECTIVES: The capacity of QuantStudio™ 3D (QS3D) and droplet digital PCR (dPCR) for the detection of plasma Epidermal Growth Factor Receptor (EGFR) mutations have been widely reported. Few comparative studies on the quantitative test of the identical DNA material, however, are carried out. Here we...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647353/ https://www.ncbi.nlm.nih.gov/pubmed/36387507 http://dx.doi.org/10.1016/j.heliyon.2022.e11339 |
Sumario: | OBJECTIVES: The capacity of QuantStudio™ 3D (QS3D) and droplet digital PCR (dPCR) for the detection of plasma Epidermal Growth Factor Receptor (EGFR) mutations have been widely reported. Few comparative studies on the quantitative test of the identical DNA material, however, are carried out. Here we compared the performance of the two methods in detecting EGFR T790M mutation in cell-free DNA (cfDNA) from the same lung cancer patients. METHODS: We recruited 72 non-small cell lung cancer (NSCLC) patients who initially respond to tyrosine kinase inhibitor treatment but subsequently developed resistance. Two tubes of 10mL anticoagulant blood were collected and cfDNA was isolated from plasma. Identical cfDNA samples were analyzed for T790M mutation using QS3D and droplet dPCR in parallel. RESULTS: T790M mutation was detected in 15 and 21 cfDNA samples by QS3D and droplet digital PCR, respectively. The 6 discordant samples showed low mutation abundance (∼0.1%) and the discrepancy is caused by the stricter threshold settings for QS3D dPCR. The overall agreement between the two methods was 91.7% (66/72). The median allele frequencies for QS3D dPCR and droplet dPCR to detect T790M mutation was 2.01% and 2.62%, respectively. There was no significance in mutation abundance detected by both methods. Both methods are highly correlated with allele frequencies and copy numbers in T790M wild type and mutant, with R(2) of 0.98, 0.92 and 0.95, respectively. CONCLUSION: Our study demonstrated that QS3D dPCR are highly consistent with droplet PCR for quantitative determination of EGFR T790M mutation in plasma cfDNA. |
---|