Cargando…
Theory and implementation of sub-model method in finite element analysis
Through finite element analysis (FEA) software to study mechanical performance of a bridge structure is currently a commonly used method. The keys to obtain accurate results are to select the appropriate element type and establish a refine mesh model. With the construction of a large number of kilom...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647488/ https://www.ncbi.nlm.nih.gov/pubmed/36387453 http://dx.doi.org/10.1016/j.heliyon.2022.e11427 |
Sumario: | Through finite element analysis (FEA) software to study mechanical performance of a bridge structure is currently a commonly used method. The keys to obtain accurate results are to select the appropriate element type and establish a refine mesh model. With the construction of a large number of kilometer-level long-span bridges in practical projects, the time cost of establishing and analyzing a fine mesh solid finite element model (FEM) of a long-span bridge with complex structure can not be ignored. In order to find the balance between accuracy and efficiency, sub-modeling technique can be used to analyze the bridge structure. It is often thought that the sub-modeling technique is only applicable to shell and solid elements, but in fact it is also applicable to plane frame models. Based on two-dimensional (2-D) beam element model, the theory of sub-model was theoretically deduced. Meanwhile the sub-modeling technique was applied and verified by an example of plane frame model. Furthermore, based on the three-dimensional (3-D) solid FEM of a skew bridge, the influence of mesh size on the calculation accuracy was illustrated. Based on sub-modeling technique of nodal displacements, the results of the global model and the sub-model for the skew bridge were compared and studied in terms of stress field and plastic damage of concrete. It is found that the sub-model technique based on nodal displacements is suitable for solid FEM. |
---|