Cargando…
Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2))
The graph [Formula: see text] is a graph which is complete and multipartite which includes j partite sets and t vertices in each partite set. The multipartite Ramsey number (M-R-number) [Formula: see text] is the smallest integer t for the mentioned graphs [Formula: see text] , in a way which for ea...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647493/ https://www.ncbi.nlm.nih.gov/pubmed/36387460 http://dx.doi.org/10.1016/j.heliyon.2022.e11431 |
_version_ | 1784827395344171008 |
---|---|
author | Rowshan, Yaser Gholami, Mostafa Shateyi, Stanford |
author_facet | Rowshan, Yaser Gholami, Mostafa Shateyi, Stanford |
author_sort | Rowshan, Yaser |
collection | PubMed |
description | The graph [Formula: see text] is a graph which is complete and multipartite which includes j partite sets and t vertices in each partite set. The multipartite Ramsey number (M-R-number) [Formula: see text] is the smallest integer t for the mentioned graphs [Formula: see text] , in a way which for each n-edge-coloring [Formula: see text] of the edges of [Formula: see text] , [Formula: see text] contains a monochromatic copy of [Formula: see text] for at least one i. The size of M-R-number [Formula: see text] for [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for each [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for [Formula: see text] , and [Formula: see text] , and the size of M-R-number [Formula: see text] for [Formula: see text] and [Formula: see text] have been calculated in various articles hitherto. We acquire some bounds of M-R-number [Formula: see text] in this essay in which [Formula: see text] , and [Formula: see text] , also the size of M-R-number [Formula: see text] for each [Formula: see text] is computed in this paper. |
format | Online Article Text |
id | pubmed-9647493 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96474932022-11-15 Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2)) Rowshan, Yaser Gholami, Mostafa Shateyi, Stanford Heliyon Research Article The graph [Formula: see text] is a graph which is complete and multipartite which includes j partite sets and t vertices in each partite set. The multipartite Ramsey number (M-R-number) [Formula: see text] is the smallest integer t for the mentioned graphs [Formula: see text] , in a way which for each n-edge-coloring [Formula: see text] of the edges of [Formula: see text] , [Formula: see text] contains a monochromatic copy of [Formula: see text] for at least one i. The size of M-R-number [Formula: see text] for [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for each [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for [Formula: see text] , and [Formula: see text] , and the size of M-R-number [Formula: see text] for [Formula: see text] and [Formula: see text] have been calculated in various articles hitherto. We acquire some bounds of M-R-number [Formula: see text] in this essay in which [Formula: see text] , and [Formula: see text] , also the size of M-R-number [Formula: see text] for each [Formula: see text] is computed in this paper. Elsevier 2022-11-03 /pmc/articles/PMC9647493/ /pubmed/36387460 http://dx.doi.org/10.1016/j.heliyon.2022.e11431 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Rowshan, Yaser Gholami, Mostafa Shateyi, Stanford Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2)) |
title | Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2)) |
title_full | Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2)) |
title_fullStr | Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2)) |
title_full_unstemmed | Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2)) |
title_short | Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2)) |
title_sort | some results on the multipartite ramsey numbers m(j)(c(3),c(m),n(1)k(2),n(2)k(2),…,n(i)k(2)) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647493/ https://www.ncbi.nlm.nih.gov/pubmed/36387460 http://dx.doi.org/10.1016/j.heliyon.2022.e11431 |
work_keys_str_mv | AT rowshanyaser someresultsonthemultipartiteramseynumbersmjc3cmn1k2n2k2nik2 AT gholamimostafa someresultsonthemultipartiteramseynumbersmjc3cmn1k2n2k2nik2 AT shateyistanford someresultsonthemultipartiteramseynumbersmjc3cmn1k2n2k2nik2 |