Cargando…

Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2))

The graph [Formula: see text] is a graph which is complete and multipartite which includes j partite sets and t vertices in each partite set. The multipartite Ramsey number (M-R-number) [Formula: see text] is the smallest integer t for the mentioned graphs [Formula: see text] , in a way which for ea...

Descripción completa

Detalles Bibliográficos
Autores principales: Rowshan, Yaser, Gholami, Mostafa, Shateyi, Stanford
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647493/
https://www.ncbi.nlm.nih.gov/pubmed/36387460
http://dx.doi.org/10.1016/j.heliyon.2022.e11431
_version_ 1784827395344171008
author Rowshan, Yaser
Gholami, Mostafa
Shateyi, Stanford
author_facet Rowshan, Yaser
Gholami, Mostafa
Shateyi, Stanford
author_sort Rowshan, Yaser
collection PubMed
description The graph [Formula: see text] is a graph which is complete and multipartite which includes j partite sets and t vertices in each partite set. The multipartite Ramsey number (M-R-number) [Formula: see text] is the smallest integer t for the mentioned graphs [Formula: see text] , in a way which for each n-edge-coloring [Formula: see text] of the edges of [Formula: see text] , [Formula: see text] contains a monochromatic copy of [Formula: see text] for at least one i. The size of M-R-number [Formula: see text] for [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for each [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for [Formula: see text] , and [Formula: see text] , and the size of M-R-number [Formula: see text] for [Formula: see text] and [Formula: see text] have been calculated in various articles hitherto. We acquire some bounds of M-R-number [Formula: see text] in this essay in which [Formula: see text] , and [Formula: see text] , also the size of M-R-number [Formula: see text] for each [Formula: see text] is computed in this paper.
format Online
Article
Text
id pubmed-9647493
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96474932022-11-15 Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2)) Rowshan, Yaser Gholami, Mostafa Shateyi, Stanford Heliyon Research Article The graph [Formula: see text] is a graph which is complete and multipartite which includes j partite sets and t vertices in each partite set. The multipartite Ramsey number (M-R-number) [Formula: see text] is the smallest integer t for the mentioned graphs [Formula: see text] , in a way which for each n-edge-coloring [Formula: see text] of the edges of [Formula: see text] , [Formula: see text] contains a monochromatic copy of [Formula: see text] for at least one i. The size of M-R-number [Formula: see text] for [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for each [Formula: see text] , [Formula: see text] , the M-R-number [Formula: see text] for [Formula: see text] , and [Formula: see text] , and the size of M-R-number [Formula: see text] for [Formula: see text] and [Formula: see text] have been calculated in various articles hitherto. We acquire some bounds of M-R-number [Formula: see text] in this essay in which [Formula: see text] , and [Formula: see text] , also the size of M-R-number [Formula: see text] for each [Formula: see text] is computed in this paper. Elsevier 2022-11-03 /pmc/articles/PMC9647493/ /pubmed/36387460 http://dx.doi.org/10.1016/j.heliyon.2022.e11431 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Research Article
Rowshan, Yaser
Gholami, Mostafa
Shateyi, Stanford
Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2))
title Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2))
title_full Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2))
title_fullStr Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2))
title_full_unstemmed Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2))
title_short Some results on the multipartite Ramsey numbers m(j)(C(3),C(m),n(1)K(2),n(2)K(2),…,n(i)K(2))
title_sort some results on the multipartite ramsey numbers m(j)(c(3),c(m),n(1)k(2),n(2)k(2),…,n(i)k(2))
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647493/
https://www.ncbi.nlm.nih.gov/pubmed/36387460
http://dx.doi.org/10.1016/j.heliyon.2022.e11431
work_keys_str_mv AT rowshanyaser someresultsonthemultipartiteramseynumbersmjc3cmn1k2n2k2nik2
AT gholamimostafa someresultsonthemultipartiteramseynumbersmjc3cmn1k2n2k2nik2
AT shateyistanford someresultsonthemultipartiteramseynumbersmjc3cmn1k2n2k2nik2