Cargando…
LitMC-BERT: Transformer-Based Multi-Label Classification of Biomedical Literature With An Application on COVID-19 Literature Curation
The rapid growth of biomedical literature poses a significant challenge for curation and interpretation. This has become more evident during the COVID-19 pandemic. LitCovid, a literature database of COVID-19 related papers in PubMed, has accumulated over 200,000 articles with millions of accesses. A...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647722/ https://www.ncbi.nlm.nih.gov/pubmed/35536809 http://dx.doi.org/10.1109/TCBB.2022.3173562 |
Ejemplares similares
-
LitCovid ensemble learning for COVID-19 multi-label classification
por: Gu, Jinghang, et al.
Publicado: (2022) -
LitCovid: an open database of COVID-19 literature
por: Chen, Qingyu, et al.
Publicado: (2020) -
BioLit: integrating biological literature with databases
por: Fink, J. Lynn, et al.
Publicado: (2008) -
BertSRC: transformer-based semantic relation classification
por: Lee, Yeawon, et al.
Publicado: (2022) -
Deep Denoising of Raw Biomedical Knowledge Graph From COVID-19 Literature, LitCovid, and Pubtator: Framework Development and Validation
por: Jiang, Chao, et al.
Publicado: (2022)