Cargando…
Automated Diagnosis of COVID-19 Using Deep Supervised Autoencoder With Multi-View Features From CT Images
Accurate and rapid diagnosis of coronavirus disease 2019 (COVID-19) from chest CT scans is of great importance and urgency during the worldwide outbreak. However, radiologists have to distinguish COVID-19 pneumonia from other pneumonia in a large number of CT scans, which is tedious and inefficient....
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647725/ https://www.ncbi.nlm.nih.gov/pubmed/34351863 http://dx.doi.org/10.1109/TCBB.2021.3102584 |
Ejemplares similares
-
Stacked-autoencoder-based model for COVID-19 diagnosis on CT images
por: Li, Daqiu, et al.
Publicado: (2020) -
Adversarial Autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process
por: Mendes, Andre, et al.
Publicado: (2020) -
Evaluating Autoencoder-Based Featurization and Supervised Learning for Protein Decoy Selection
por: Alam, Fardina Fathmiul, et al.
Publicado: (2020) -
Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review
por: Hassan, Haseeb, et al.
Publicado: (2022) -
Searching for pneumothorax in x-ray images using autoencoded deep features
por: Sze-To, Antonio, et al.
Publicado: (2021)