Cargando…
Gemdimethyl Peptide Nucleic Acids (α/β/γ-gdm-PNA): E/Z-Rotamers Influence the Selectivity in the Formation of Parallel/Antiparallel gdm-PNA:DNA/RNA Duplexes
[Image: see text] Peptide nucleic acids (PNAs) consist of an aminoethylglycine (aeg) backbone to which the nucleobases are linked through a tertiary amide group and bind to complementary DNA/RNA in a sequence-specific manner. The flexible aeg backbone has been the target for several chemical modific...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9647847/ https://www.ncbi.nlm.nih.gov/pubmed/36385799 http://dx.doi.org/10.1021/acsomega.2c05873 |
Sumario: | [Image: see text] Peptide nucleic acids (PNAs) consist of an aminoethylglycine (aeg) backbone to which the nucleobases are linked through a tertiary amide group and bind to complementary DNA/RNA in a sequence-specific manner. The flexible aeg backbone has been the target for several chemical modifications of the PNA to improve its properties such as specificity, solubility, etc. PNA monomers exhibit a mixture of two rotamers (Z/E) arising from the restricted rotation around the tertiary amide N–CO bond. We have recently demonstrated that achiral gemdimethyl substitution at the α, β, and γ sites on the aeg backbone induces exclusive Z (α-gdm)- or E-rotamer (β-gdm) selectivity at the monomer level. It is now shown that γ/β-gdm-PNA:DNA parallel duplexes are more stable than the analogous antiparallel duplexes, while γ/β-gdm-PNA:RNA antiparallel duplexes are more stable than parallel duplexes. Furthermore, the γ/β-gdm-PNA:RNA duplexes are more stable than the γ/β-gdm-PNA:DNA duplexes. These results with γ/β-gdm-PNA are the reverse of those previously seen with α-gdm-PNA oligomers that stabilized antiparallel α-gdm-PNA:DNA duplexes compared to α-gdm-PNA:RNA duplexes. The stability of antiparallel/parallel PNA:DNA/RNA duplexes is correlated with the preference for Z/E-rotamer selectivity in α/β-gdm-PNA monomers, with Z-rotamers (α-gdm) leading to antiparallel duplexes and E-rotamers (β/γ-gdm) leading to parallel duplexes. The results highlight the role and importance of Z- and E-rotamers in controlling the structural preferences of PNA:DNA/RNA duplexes. |
---|