Cargando…
Optimization of Colloidal Gold Nanoparticles on Porous Anodic Aluminum Oxide Substrates for Refractometric Sensing
[Image: see text] A new composite metal–insulator–metal (MIM) system consisting of exceptionally dense non-close-packed (NCP) arrays of gold or silver nanoparticles, porous anodic aluminum oxide (PAAO), and bulk aluminum substrate interacts strongly with visible light and may become a very useful co...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648095/ https://www.ncbi.nlm.nih.gov/pubmed/36385891 http://dx.doi.org/10.1021/acsomega.2c05305 |
_version_ | 1784827507518734336 |
---|---|
author | Malinovskis, Uldis Popļausks, Raimonds Jurkevičiu̅tė, Aušrinė Dutovs, Aleksandrs Berzins, Karlis Perkanuks, Vladislavs Simka, Wojciech Muiznieks, Indrikis Erts, Donats Prikulis, Juris |
author_facet | Malinovskis, Uldis Popļausks, Raimonds Jurkevičiu̅tė, Aušrinė Dutovs, Aleksandrs Berzins, Karlis Perkanuks, Vladislavs Simka, Wojciech Muiznieks, Indrikis Erts, Donats Prikulis, Juris |
author_sort | Malinovskis, Uldis |
collection | PubMed |
description | [Image: see text] A new composite metal–insulator–metal (MIM) system consisting of exceptionally dense non-close-packed (NCP) arrays of gold or silver nanoparticles, porous anodic aluminum oxide (PAAO), and bulk aluminum substrate interacts strongly with visible light and may become a very useful component for optical applications. The proposed MIM structure can be synthesized using accessible lithography-free chemical and physical processes (anodization and capillary force assisted colloidal particle deposition) that are suitable for the low-cost production of specialized devices. Here, we present a systematic study to determine the essential MIM structure parameters (nanoparticle size and PAAO layer thickness) for localized surface plasmon resonance (LSPR) refractometric sensing. A performance comparison was done by recording the spectra of scattered light upon angled illumination in media with different refractive indices. A clear advantage for maximizing the signal to background ratio was observed in the case of 60 and 80 nm Au nanoparticles with a PAAO thickness in a narrow range between 300 and 375 nm. Sensitivity exceeding a 200 nm peak wavelength shift per refractive index unit was found for 60 nm Au nanoparticles on approximately 500-nm-thick PAAO. The experimental observations were supported by finite-difference time-domain (FDTD) simulations. |
format | Online Article Text |
id | pubmed-9648095 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-96480952022-11-15 Optimization of Colloidal Gold Nanoparticles on Porous Anodic Aluminum Oxide Substrates for Refractometric Sensing Malinovskis, Uldis Popļausks, Raimonds Jurkevičiu̅tė, Aušrinė Dutovs, Aleksandrs Berzins, Karlis Perkanuks, Vladislavs Simka, Wojciech Muiznieks, Indrikis Erts, Donats Prikulis, Juris ACS Omega [Image: see text] A new composite metal–insulator–metal (MIM) system consisting of exceptionally dense non-close-packed (NCP) arrays of gold or silver nanoparticles, porous anodic aluminum oxide (PAAO), and bulk aluminum substrate interacts strongly with visible light and may become a very useful component for optical applications. The proposed MIM structure can be synthesized using accessible lithography-free chemical and physical processes (anodization and capillary force assisted colloidal particle deposition) that are suitable for the low-cost production of specialized devices. Here, we present a systematic study to determine the essential MIM structure parameters (nanoparticle size and PAAO layer thickness) for localized surface plasmon resonance (LSPR) refractometric sensing. A performance comparison was done by recording the spectra of scattered light upon angled illumination in media with different refractive indices. A clear advantage for maximizing the signal to background ratio was observed in the case of 60 and 80 nm Au nanoparticles with a PAAO thickness in a narrow range between 300 and 375 nm. Sensitivity exceeding a 200 nm peak wavelength shift per refractive index unit was found for 60 nm Au nanoparticles on approximately 500-nm-thick PAAO. The experimental observations were supported by finite-difference time-domain (FDTD) simulations. American Chemical Society 2022-10-28 /pmc/articles/PMC9648095/ /pubmed/36385891 http://dx.doi.org/10.1021/acsomega.2c05305 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Malinovskis, Uldis Popļausks, Raimonds Jurkevičiu̅tė, Aušrinė Dutovs, Aleksandrs Berzins, Karlis Perkanuks, Vladislavs Simka, Wojciech Muiznieks, Indrikis Erts, Donats Prikulis, Juris Optimization of Colloidal Gold Nanoparticles on Porous Anodic Aluminum Oxide Substrates for Refractometric Sensing |
title | Optimization of Colloidal Gold Nanoparticles on Porous
Anodic Aluminum Oxide Substrates for Refractometric Sensing |
title_full | Optimization of Colloidal Gold Nanoparticles on Porous
Anodic Aluminum Oxide Substrates for Refractometric Sensing |
title_fullStr | Optimization of Colloidal Gold Nanoparticles on Porous
Anodic Aluminum Oxide Substrates for Refractometric Sensing |
title_full_unstemmed | Optimization of Colloidal Gold Nanoparticles on Porous
Anodic Aluminum Oxide Substrates for Refractometric Sensing |
title_short | Optimization of Colloidal Gold Nanoparticles on Porous
Anodic Aluminum Oxide Substrates for Refractometric Sensing |
title_sort | optimization of colloidal gold nanoparticles on porous
anodic aluminum oxide substrates for refractometric sensing |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648095/ https://www.ncbi.nlm.nih.gov/pubmed/36385891 http://dx.doi.org/10.1021/acsomega.2c05305 |
work_keys_str_mv | AT malinovskisuldis optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT poplausksraimonds optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT jurkeviciuteausrine optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT dutovsaleksandrs optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT berzinskarlis optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT perkanuksvladislavs optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT simkawojciech optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT muiznieksindrikis optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT ertsdonats optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing AT prikulisjuris optimizationofcolloidalgoldnanoparticlesonporousanodicaluminumoxidesubstratesforrefractometricsensing |