Cargando…

Efficient Implementation of Density Functional Theory Based Embedding for Molecular and Periodic Systems Using Gaussian Basis Functions

[Image: see text] A practical and effective implementation of density functional theory based embedding is reported, which allows us to treat both periodic and aperiodic systems on an equal footing. Its essence is the expansion of orbitals and electron density of the periodic system using Gaussian b...

Descripción completa

Detalles Bibliográficos
Autores principales: Sharma, Manas, Sierka, Marek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648187/
https://www.ncbi.nlm.nih.gov/pubmed/36223886
http://dx.doi.org/10.1021/acs.jctc.2c00380
Descripción
Sumario:[Image: see text] A practical and effective implementation of density functional theory based embedding is reported, which allows us to treat both periodic and aperiodic systems on an equal footing. Its essence is the expansion of orbitals and electron density of the periodic system using Gaussian basis functions, rather than plane-waves, which provides a unique all-electron direct-space representation, thus avoiding the need for pseudopotentials. This makes the construction of embedding potential for a molecular active subsystem due to a periodic environment quite convenient, as transformation between representations is far from trivial. The three flavors of embedding, molecule-in-molecule, molecule-in-periodic, and periodic-in-periodic embedding, are implemented using embedding potentials based on non-additive kinetic energy density functionals (approximate) and level-shift projection operator (exact). The embedding scheme is coupled with a variety of correlated wave function theory (WFT) methods, thereby providing an efficient way to study the ground and excited state properties of low-dimensional systems using high-level methods for the region of interest. Finally, an implementation of real time–time-dependent density functional embedding theory (RT-TDDFET) is presented that uses a projection operator-based embedding potential and provides accurate results compared to full RT-TDDFT for systems with uncoupled excitations. The embedding potential is calculated efficiently using a combination of density fitting and continuous fast multipole method for the Coulomb term. The applicability of (i) WFT-in-DFT embedding, in predicting the adsorption and excitation energies, and (ii) RT-TDDFET, in predicting the absorption spectra, is explored for various test systems.