Cargando…
Advances, obstacles, and opportunities for machine learning in proteomics
The fields of proteomics and machine learning are both large disciplines, each producing well over 5,000 publications per year. However, studies combining both fields are still relatively rare, with only about 2% of recent proteomics papers including machine learning. This review, which focuses on t...
Autores principales: | Desaire, Heather, Go, Eden P., Hua, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648337/ https://www.ncbi.nlm.nih.gov/pubmed/36381226 http://dx.doi.org/10.1016/j.xcrp.2022.101069 |
Ejemplares similares
-
Glycosylation and Disulfide
Bond Analysis of Transiently
and Stably Expressed
Clade C HIV-1 gp140 Trimers in 293T Cells Identifies Disulfide
Heterogeneity Present in Both Proteins and Differences in O-Linked Glycosylation
por: Go, Eden P., et al.
Publicado: (2014) -
The opportunity cost of automated glycopeptide analysis: case study profiling the SARS-CoV-2 S glycoprotein
por: Go, Eden P., et al.
Publicado: (2021) -
The Local-Balanced Model for Improved Machine Learning Outcomes on Mass Spectrometry Data Sets and Other Instrumental Data
por: Desaire, Heather, et al.
Publicado: (2021) -
Opportunities and obstacles for deep learning in biology and medicine
por: Ching, Travers, et al.
Publicado: (2018) -
New Glycoproteomics Software, GlycoPep Evaluator,
Generates Decoy Glycopeptides de Novo and Enables Accurate False Discovery
Rate Analysis for Small Data Sets
por: Zhu, Zhikai, et al.
Publicado: (2014)