Cargando…

Developing and validating a machine learning prognostic model for alerting to imminent deterioration of hospitalized patients with COVID-19

Our study was aimed at developing and validating a new approach, embodied in a machine learning-based model, for sequentially monitoring hospitalized COVID-19 patients and directing professional attention to patients whose deterioration is imminent. Model development employed real-world patient data...

Descripción completa

Detalles Bibliográficos
Autores principales: Kogan, Yuri, Robinson, Ari, Itelman, Edward, Bar-Nur, Yeonatan, Jakobson, Daniel Jorge, Segal, Gad, Agur, Zvia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648491/
https://www.ncbi.nlm.nih.gov/pubmed/36357439
http://dx.doi.org/10.1038/s41598-022-23553-7
Descripción
Sumario:Our study was aimed at developing and validating a new approach, embodied in a machine learning-based model, for sequentially monitoring hospitalized COVID-19 patients and directing professional attention to patients whose deterioration is imminent. Model development employed real-world patient data (598 prediction events for 210 patients), internal validation (315 prediction events for 97 patients), and external validation (1373 prediction events for 307 patients). Results show significant divergence in longitudinal values of eight routinely collected blood parameters appearing several days before deterioration. Our model uses these signals to predict the personal likelihood of transition from non-severe to severe status within well-specified short time windows. Internal validation of the model's prediction accuracy showed ROC AUC of 0.8 and 0.79 for prediction scopes of 48 or 96 h, respectively; external validation showed ROC AUC of 0.7 and 0.73 for the same prediction scopes. Results indicate the feasibility of predicting the forthcoming deterioration of non-severe COVID-19 patients by eight routinely collected blood parameters, including neutrophil, lymphocyte, monocyte, and platelets counts, neutrophil-to-lymphocyte ratio, CRP, LDH, and D-dimer. A prospective clinical study and an impact assessment will allow implementation of this model in the clinic to improve care, streamline resources and ease hospital burden by timely focusing the medical attention on potentially deteriorating patients.