Cargando…
Subsequent AS01-adjuvanted vaccinations induce similar transcriptional responses in populations with different disease statuses
Transcriptional responses to adjuvanted vaccines can vary substantially among populations. Interindividual diversity in levels of pathogen exposure, and thus of cell-mediated immunological memory at baseline, may be an important determinant of population differences in vaccine responses. Adjuvant Sy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648731/ https://www.ncbi.nlm.nih.gov/pubmed/36355775 http://dx.doi.org/10.1371/journal.pone.0276505 |
Sumario: | Transcriptional responses to adjuvanted vaccines can vary substantially among populations. Interindividual diversity in levels of pathogen exposure, and thus of cell-mediated immunological memory at baseline, may be an important determinant of population differences in vaccine responses. Adjuvant System AS01 is used in licensed or candidate vaccines for several diseases and populations, yet the impact of pre-existing immunity on its adjuvanticity remains to be elucidated. In this exploratory post-hoc analysis of clinical trial samples (clinicalTrials.gov: NCT01424501), we compared gene expression patterns elicited by two immunizations with the candidate tuberculosis (TB) vaccine M72/AS01, between three groups of individuals with different levels of memory responses to TB antigens before vaccination. Analyzed were one group of TB-disease-treated individuals, and two groups of TB-disease-naïve individuals who were (based on purified protein derivative [PPD] skin-test results) stratified into PPD-positive and PPD-negative groups. Although TB-disease-treated individuals displayed slightly stronger transcriptional responses after each vaccine dose, functional gene signatures were overall not distinctly different between groups. Considering the similarities with the signatures found previously for other AS01-adjuvanted vaccines, many features of the response appeared to be adjuvant-driven. Across groups, cell proliferation-related signals at 7 days post-dose 1 were associated with increased anti-M72 antibody response magnitudes. These early signals were stronger in the TB-disease-treated group as compared to both TB-disease-naïve groups. Interindividual homogeneity in gene expression levels was also higher for TB-disease-treated individuals post-dose 1, but increased in all groups post-dose 2 to attain similar levels between the three groups. Altogether, strong cell-mediated memory responses at baseline accelerated and amplified transcriptional responses to a single dose of this AS01-adjuvanted vaccine, resulting in more homogenous gene expression levels among the highly-primed individuals as compared to the disease-naïve individuals. However, after a second vaccination, response heterogeneity decreased and was similar across groups, irrespective of the degree of immune memory acquired at baseline. This information can support the design and analysis of future clinical trials evaluating AS01-adjuvanted vaccines. |
---|