Cargando…
Mutual influence between language and perception in multi-agent communication games
Language interfaces with many other cognitive domains. This paper explores how interactions at these interfaces can be studied with deep learning methods, focusing on the relation between language emergence and visual perception. To model the emergence of language, a sender and a receiver agent are...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648844/ https://www.ncbi.nlm.nih.gov/pubmed/36315590 http://dx.doi.org/10.1371/journal.pcbi.1010658 |
_version_ | 1784827667782041600 |
---|---|
author | Ohmer, Xenia Marino, Michael Franke, Michael König, Peter |
author_facet | Ohmer, Xenia Marino, Michael Franke, Michael König, Peter |
author_sort | Ohmer, Xenia |
collection | PubMed |
description | Language interfaces with many other cognitive domains. This paper explores how interactions at these interfaces can be studied with deep learning methods, focusing on the relation between language emergence and visual perception. To model the emergence of language, a sender and a receiver agent are trained on a reference game. The agents are implemented as deep neural networks, with dedicated vision and language modules. Motivated by the mutual influence between language and perception in cognition, we apply systematic manipulations to the agents’ (i) visual representations, to analyze the effects on emergent communication, and (ii) communication protocols, to analyze the effects on visual representations. Our analyses show that perceptual biases shape semantic categorization and communicative content. Conversely, if the communication protocol partitions object space along certain attributes, agents learn to represent visual information about these attributes more accurately, and the representations of communication partners align. Finally, an evolutionary analysis suggests that visual representations may be shaped in part to facilitate the communication of environmentally relevant distinctions. Aside from accounting for co-adaptation effects between language and perception, our results point out ways to modulate and improve visual representation learning and emergent communication in artificial agents. |
format | Online Article Text |
id | pubmed-9648844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-96488442022-11-15 Mutual influence between language and perception in multi-agent communication games Ohmer, Xenia Marino, Michael Franke, Michael König, Peter PLoS Comput Biol Research Article Language interfaces with many other cognitive domains. This paper explores how interactions at these interfaces can be studied with deep learning methods, focusing on the relation between language emergence and visual perception. To model the emergence of language, a sender and a receiver agent are trained on a reference game. The agents are implemented as deep neural networks, with dedicated vision and language modules. Motivated by the mutual influence between language and perception in cognition, we apply systematic manipulations to the agents’ (i) visual representations, to analyze the effects on emergent communication, and (ii) communication protocols, to analyze the effects on visual representations. Our analyses show that perceptual biases shape semantic categorization and communicative content. Conversely, if the communication protocol partitions object space along certain attributes, agents learn to represent visual information about these attributes more accurately, and the representations of communication partners align. Finally, an evolutionary analysis suggests that visual representations may be shaped in part to facilitate the communication of environmentally relevant distinctions. Aside from accounting for co-adaptation effects between language and perception, our results point out ways to modulate and improve visual representation learning and emergent communication in artificial agents. Public Library of Science 2022-10-31 /pmc/articles/PMC9648844/ /pubmed/36315590 http://dx.doi.org/10.1371/journal.pcbi.1010658 Text en © 2022 Ohmer et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Ohmer, Xenia Marino, Michael Franke, Michael König, Peter Mutual influence between language and perception in multi-agent communication games |
title | Mutual influence between language and perception in multi-agent communication games |
title_full | Mutual influence between language and perception in multi-agent communication games |
title_fullStr | Mutual influence between language and perception in multi-agent communication games |
title_full_unstemmed | Mutual influence between language and perception in multi-agent communication games |
title_short | Mutual influence between language and perception in multi-agent communication games |
title_sort | mutual influence between language and perception in multi-agent communication games |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648844/ https://www.ncbi.nlm.nih.gov/pubmed/36315590 http://dx.doi.org/10.1371/journal.pcbi.1010658 |
work_keys_str_mv | AT ohmerxenia mutualinfluencebetweenlanguageandperceptioninmultiagentcommunicationgames AT marinomichael mutualinfluencebetweenlanguageandperceptioninmultiagentcommunicationgames AT frankemichael mutualinfluencebetweenlanguageandperceptioninmultiagentcommunicationgames AT konigpeter mutualinfluencebetweenlanguageandperceptioninmultiagentcommunicationgames |