Cargando…
Development and validation of self-monitoring auto-updating prognostic models of survival for hospitalized COVID-19 patients
Clinical prognostic models can assist patient care decisions. However, their performance can drift over time and location, necessitating model monitoring and updating. Despite rapid and significant changes during the pandemic, prognostic models for COVID-19 patients do not currently account for thes...
Autores principales: | Levy, Todd J., Coppa, Kevin, Cang, Jinxuan, Barnaby, Douglas P., Paradis, Marc D., Cohen, Stuart L., Makhnevich, Alex, van Klaveren, David, Kent, David M., Davidson, Karina W., Hirsch, Jamie S., Zanos, Theodoros P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9648888/ https://www.ncbi.nlm.nih.gov/pubmed/36357420 http://dx.doi.org/10.1038/s41467-022-34646-2 |
Ejemplares similares
-
Machine learning to assist clinical decision-making during the COVID-19 pandemic
por: Debnath, Shubham, et al.
Publicado: (2020) -
The association of clinically relevant variables with chest radiograph lung disease burden quantified in real-time by radiologists upon initial presentation in individuals hospitalized with COVID-19
por: Levy, Todd, et al.
Publicado: (2023) -
A radiographic, deep transfer learning framework, adapted to estimate lung opacities from chest x-rays
por: Vardhan, Avantika, et al.
Publicado: (2023) -
Prognostic models for COVID-19 needed updating to warrant transportability over time and space
por: van Klaveren, David, et al.
Publicado: (2022) -
A method to quantify autonomic nervous system function in healthy, able-bodied individuals
por: Debnath, Shubham, et al.
Publicado: (2021)