Cargando…
MC-UNet: Multimodule Concatenation Based on U-Shape Network for Retinal Blood Vessels Segmentation
Accurate retinal blood vessels segmentation is an important step in the clinical diagnosis of ophthalmic diseases. Many deep learning frameworks have come up for retinal blood vessels segmentation tasks. However, the complex vascular structure and uncertain pathological features make blood vessel se...
Autores principales: | Li, Jun, Zhang, Ting, Zhao, Yi, Chen, Nan, Zhou, Han, Xu, Hongtao, Guan, Zihao, Xue, Lanyan, Yang, Changcai, Chen, Riqing, Wei, Lifang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649298/ https://www.ncbi.nlm.nih.gov/pubmed/36387767 http://dx.doi.org/10.1155/2022/9917691 |
Ejemplares similares
-
PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation
por: Chen, Danny, et al.
Publicado: (2022) -
MAS-UNet: a U-shaped network for prostate segmentation
por: Hong, YuQi, et al.
Publicado: (2023) -
BCR-UNet: Bi-directional ConvLSTM residual U-Net for retinal blood vessel segmentation
por: Yi, Yugen, et al.
Publicado: (2022) -
Nucleus segmentation and classification using residual SE-UNet and feature concatenation approach incervical cytopathology cell images
por: Chowdary, G Jignesh, et al.
Publicado: (2023) -
An Effective Image-Based Tomato Leaf Disease Segmentation Method Using MC-UNet
por: Deng, Yubao, et al.
Publicado: (2023)