Cargando…
Acoustic and visual cetacean surveys reveal year-round spatial and temporal distributions for multiple species in northern British Columbia, Canada
Cetaceans spend most of their time below the surface of the sea, highlighting the importance of passive acoustic monitoring as a tool to facilitate understanding and mapping their year-round spatial and temporal distributions. To increase our limited knowledge of cetacean acoustic detection patterns...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649617/ https://www.ncbi.nlm.nih.gov/pubmed/36357410 http://dx.doi.org/10.1038/s41598-022-22069-4 |
Sumario: | Cetaceans spend most of their time below the surface of the sea, highlighting the importance of passive acoustic monitoring as a tool to facilitate understanding and mapping their year-round spatial and temporal distributions. To increase our limited knowledge of cetacean acoustic detection patterns for the east and west coasts of Gwaii Haanas, a remote protected area on Haida Gwaii, BC, Canada, acoustic datasets recorded off SG̱ang Gwaay (Sep 2009–May 2011), Gowgaia Slope (Jul 2017–Jul 2019), and Ramsay Island (Aug 2018–Aug 2019) were analyzed. Comparing overlapping periods of visual surveys and acoustic monitoring confirmed presence of 12 cetacean species/species groups within the study region. Seasonal patterns were identified for blue, fin, humpback, grey and sperm whale acoustic signals. Killer whale and delphinid acoustic signals occurred year-round on both coasts of Haida Gwaii and showed strong diel variation. Cuvier’s, Baird’s, beaked whale and porpoise clicks, were identified in high-frequency recordings on the west coast. Correlations between environmental factors, chlorophyll-a and sea surface temperature, and cetacean acoustic occurrence off Gwaii Haanas were also examined. This study is the first to acoustically monitor Gwaii Haanas waters for an extended continuous period and therefore serves as a baseline from which to monitor future changes. |
---|