Cargando…
Cardiac ischemia modulates white adipose tissue in a depot-specific manner
The incidence of heart failure after myocardial infarction (MI) remains high and the underlying causes are incompletely understood. The crosstalk between heart and adipose tissue and stimulated lipolysis has been identified as potential driver of heart failure. Lipolysis is also activated acutely in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649620/ https://www.ncbi.nlm.nih.gov/pubmed/36388122 http://dx.doi.org/10.3389/fphys.2022.1036945 |
_version_ | 1784827836349022208 |
---|---|
author | Wang, Luzhou Zabri, Heba Gorressen, Simone Semmler, Dominik Hundhausen, Christian Fischer, Jens W. Bottermann, Katharina |
author_facet | Wang, Luzhou Zabri, Heba Gorressen, Simone Semmler, Dominik Hundhausen, Christian Fischer, Jens W. Bottermann, Katharina |
author_sort | Wang, Luzhou |
collection | PubMed |
description | The incidence of heart failure after myocardial infarction (MI) remains high and the underlying causes are incompletely understood. The crosstalk between heart and adipose tissue and stimulated lipolysis has been identified as potential driver of heart failure. Lipolysis is also activated acutely in response to MI. However, the role in the post-ischemic remodeling process and the contribution of different depots of adipose tissue is unclear. Here, we employ a mouse model of 60 min cardiac ischemia and reperfusion (I/R) to monitor morphology, cellular infiltrates and gene expression of visceral and subcutaneous white adipose tissue depots (VAT and SAT) for up to 28 days post ischemia. We found that in SAT but not VAT, adipocyte size gradually decreased over the course of reperfusion and that these changes were associated with upregulation of UCP1 protein, indicating white adipocyte conversion to the so-called ‘brown-in-white’ phenotype. While this phenomenon is generally associated with beneficial metabolic consequences, its role in the context of MI is unknown. We further measured decreased lipogenesis in SAT together with enhanced infiltration of MAC-2(+) macrophages. Finally, quantitative PCR analysis revealed transient downregulation of the adipokines adiponectin, leptin and resistin in SAT. While adiponectin and leptin have been shown to be cardioprotective, the role of resistin after MI needs further investigation. Importantly, all significant changes were identified in SAT, while VAT was largely unaffected by MI. We conclude that targeted interference with lipolysis in SAT may be a promising approach to promote cardiac healing after ischemia. |
format | Online Article Text |
id | pubmed-9649620 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96496202022-11-15 Cardiac ischemia modulates white adipose tissue in a depot-specific manner Wang, Luzhou Zabri, Heba Gorressen, Simone Semmler, Dominik Hundhausen, Christian Fischer, Jens W. Bottermann, Katharina Front Physiol Physiology The incidence of heart failure after myocardial infarction (MI) remains high and the underlying causes are incompletely understood. The crosstalk between heart and adipose tissue and stimulated lipolysis has been identified as potential driver of heart failure. Lipolysis is also activated acutely in response to MI. However, the role in the post-ischemic remodeling process and the contribution of different depots of adipose tissue is unclear. Here, we employ a mouse model of 60 min cardiac ischemia and reperfusion (I/R) to monitor morphology, cellular infiltrates and gene expression of visceral and subcutaneous white adipose tissue depots (VAT and SAT) for up to 28 days post ischemia. We found that in SAT but not VAT, adipocyte size gradually decreased over the course of reperfusion and that these changes were associated with upregulation of UCP1 protein, indicating white adipocyte conversion to the so-called ‘brown-in-white’ phenotype. While this phenomenon is generally associated with beneficial metabolic consequences, its role in the context of MI is unknown. We further measured decreased lipogenesis in SAT together with enhanced infiltration of MAC-2(+) macrophages. Finally, quantitative PCR analysis revealed transient downregulation of the adipokines adiponectin, leptin and resistin in SAT. While adiponectin and leptin have been shown to be cardioprotective, the role of resistin after MI needs further investigation. Importantly, all significant changes were identified in SAT, while VAT was largely unaffected by MI. We conclude that targeted interference with lipolysis in SAT may be a promising approach to promote cardiac healing after ischemia. Frontiers Media S.A. 2022-10-28 /pmc/articles/PMC9649620/ /pubmed/36388122 http://dx.doi.org/10.3389/fphys.2022.1036945 Text en Copyright © 2022 Wang, Zabri, Gorressen, Semmler, Hundhausen, Fischer and Bottermann. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Physiology Wang, Luzhou Zabri, Heba Gorressen, Simone Semmler, Dominik Hundhausen, Christian Fischer, Jens W. Bottermann, Katharina Cardiac ischemia modulates white adipose tissue in a depot-specific manner |
title | Cardiac ischemia modulates white adipose tissue in a depot-specific manner |
title_full | Cardiac ischemia modulates white adipose tissue in a depot-specific manner |
title_fullStr | Cardiac ischemia modulates white adipose tissue in a depot-specific manner |
title_full_unstemmed | Cardiac ischemia modulates white adipose tissue in a depot-specific manner |
title_short | Cardiac ischemia modulates white adipose tissue in a depot-specific manner |
title_sort | cardiac ischemia modulates white adipose tissue in a depot-specific manner |
topic | Physiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649620/ https://www.ncbi.nlm.nih.gov/pubmed/36388122 http://dx.doi.org/10.3389/fphys.2022.1036945 |
work_keys_str_mv | AT wangluzhou cardiacischemiamodulateswhiteadiposetissueinadepotspecificmanner AT zabriheba cardiacischemiamodulateswhiteadiposetissueinadepotspecificmanner AT gorressensimone cardiacischemiamodulateswhiteadiposetissueinadepotspecificmanner AT semmlerdominik cardiacischemiamodulateswhiteadiposetissueinadepotspecificmanner AT hundhausenchristian cardiacischemiamodulateswhiteadiposetissueinadepotspecificmanner AT fischerjensw cardiacischemiamodulateswhiteadiposetissueinadepotspecificmanner AT bottermannkatharina cardiacischemiamodulateswhiteadiposetissueinadepotspecificmanner |