Cargando…

An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss

The mechanistic target of rapamycin complex 1 (mTORC1) integrates inputs from growth factors and nutrients, but how mTORC1 autoregulates its activity remains unclear. The MiT/TFE transcription factors are phosphorylated and inactivated by mTORC1 following lysosomal recruitment by RagC/D GTPases in r...

Descripción completa

Detalles Bibliográficos
Autores principales: Asrani, Kaushal, Woo, Juhyung, Mendes, Adrianna A., Schaffer, Ethan, Vidotto, Thiago, Villanueva, Clarence Rachel, Feng, Kewen, Oliveira, Lia, Murali, Sanjana, Liu, Hans B., Salles, Daniela C., Lam, Brandon, Argani, Pedram, Lotan, Tamara L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649702/
https://www.ncbi.nlm.nih.gov/pubmed/36357396
http://dx.doi.org/10.1038/s41467-022-34617-7
_version_ 1784827854745239552
author Asrani, Kaushal
Woo, Juhyung
Mendes, Adrianna A.
Schaffer, Ethan
Vidotto, Thiago
Villanueva, Clarence Rachel
Feng, Kewen
Oliveira, Lia
Murali, Sanjana
Liu, Hans B.
Salles, Daniela C.
Lam, Brandon
Argani, Pedram
Lotan, Tamara L.
author_facet Asrani, Kaushal
Woo, Juhyung
Mendes, Adrianna A.
Schaffer, Ethan
Vidotto, Thiago
Villanueva, Clarence Rachel
Feng, Kewen
Oliveira, Lia
Murali, Sanjana
Liu, Hans B.
Salles, Daniela C.
Lam, Brandon
Argani, Pedram
Lotan, Tamara L.
author_sort Asrani, Kaushal
collection PubMed
description The mechanistic target of rapamycin complex 1 (mTORC1) integrates inputs from growth factors and nutrients, but how mTORC1 autoregulates its activity remains unclear. The MiT/TFE transcription factors are phosphorylated and inactivated by mTORC1 following lysosomal recruitment by RagC/D GTPases in response to amino acid stimulation. We find that starvation-induced lysosomal localization of the RagC/D GAP complex, FLCN:FNIP2, is markedly impaired in a mTORC1-sensitive manner in renal cells with TSC2 loss, resulting in unexpected TFEB hypophosphorylation and activation upon feeding. TFEB phosphorylation in TSC2-null renal cells is partially restored by destabilization of the lysosomal folliculin complex (LFC) induced by FLCN mutants and is fully rescued by forced lysosomal localization of the FLCN:FNIP2 dimer. Our data indicate that a negative feedback loop constrains amino acid-induced, FLCN:FNIP2-mediated RagC activity in renal cells with constitutive mTORC1 signaling, and the resulting MiT/TFE hyperactivation may drive oncogenesis with loss of the TSC2 tumor suppressor.
format Online
Article
Text
id pubmed-9649702
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-96497022022-11-15 An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss Asrani, Kaushal Woo, Juhyung Mendes, Adrianna A. Schaffer, Ethan Vidotto, Thiago Villanueva, Clarence Rachel Feng, Kewen Oliveira, Lia Murali, Sanjana Liu, Hans B. Salles, Daniela C. Lam, Brandon Argani, Pedram Lotan, Tamara L. Nat Commun Article The mechanistic target of rapamycin complex 1 (mTORC1) integrates inputs from growth factors and nutrients, but how mTORC1 autoregulates its activity remains unclear. The MiT/TFE transcription factors are phosphorylated and inactivated by mTORC1 following lysosomal recruitment by RagC/D GTPases in response to amino acid stimulation. We find that starvation-induced lysosomal localization of the RagC/D GAP complex, FLCN:FNIP2, is markedly impaired in a mTORC1-sensitive manner in renal cells with TSC2 loss, resulting in unexpected TFEB hypophosphorylation and activation upon feeding. TFEB phosphorylation in TSC2-null renal cells is partially restored by destabilization of the lysosomal folliculin complex (LFC) induced by FLCN mutants and is fully rescued by forced lysosomal localization of the FLCN:FNIP2 dimer. Our data indicate that a negative feedback loop constrains amino acid-induced, FLCN:FNIP2-mediated RagC activity in renal cells with constitutive mTORC1 signaling, and the resulting MiT/TFE hyperactivation may drive oncogenesis with loss of the TSC2 tumor suppressor. Nature Publishing Group UK 2022-11-10 /pmc/articles/PMC9649702/ /pubmed/36357396 http://dx.doi.org/10.1038/s41467-022-34617-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Asrani, Kaushal
Woo, Juhyung
Mendes, Adrianna A.
Schaffer, Ethan
Vidotto, Thiago
Villanueva, Clarence Rachel
Feng, Kewen
Oliveira, Lia
Murali, Sanjana
Liu, Hans B.
Salles, Daniela C.
Lam, Brandon
Argani, Pedram
Lotan, Tamara L.
An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss
title An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss
title_full An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss
title_fullStr An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss
title_full_unstemmed An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss
title_short An mTORC1-mediated negative feedback loop constrains amino acid-induced FLCN-Rag activation in renal cells with TSC2 loss
title_sort mtorc1-mediated negative feedback loop constrains amino acid-induced flcn-rag activation in renal cells with tsc2 loss
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649702/
https://www.ncbi.nlm.nih.gov/pubmed/36357396
http://dx.doi.org/10.1038/s41467-022-34617-7
work_keys_str_mv AT asranikaushal anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT woojuhyung anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT mendesadriannaa anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT schafferethan anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT vidottothiago anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT villanuevaclarencerachel anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT fengkewen anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT oliveiralia anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT muralisanjana anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT liuhansb anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT sallesdanielac anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT lambrandon anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT arganipedram anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT lotantamaral anmtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT asranikaushal mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT woojuhyung mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT mendesadriannaa mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT schafferethan mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT vidottothiago mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT villanuevaclarencerachel mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT fengkewen mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT oliveiralia mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT muralisanjana mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT liuhansb mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT sallesdanielac mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT lambrandon mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT arganipedram mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss
AT lotantamaral mtorc1mediatednegativefeedbackloopconstrainsaminoacidinducedflcnragactivationinrenalcellswithtsc2loss