Cargando…
FAIR principles for AI models with a practical application for accelerated high energy diffraction microscopy
A concise and measurable set of FAIR (Findable, Accessible, Interoperable and Reusable) principles for scientific data is transforming the state-of-practice for data management and stewardship, supporting and enabling discovery and innovation. Learning from this initiative, and acknowledging the imp...
Autores principales: | Ravi, Nikil, Chaturvedi, Pranshu, Huerta, E. A., Liu, Zhengchun, Chard, Ryan, Scourtas, Aristana, Schmidt, K. J., Chard, Kyle, Blaiszik, Ben, Foster, Ian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649764/ https://www.ncbi.nlm.nih.gov/pubmed/36357431 http://dx.doi.org/10.1038/s41597-022-01712-9 |
Ejemplares similares
-
Linking scientific instruments and computation: Patterns, technologies, and experiences
por: Vescovi, Rafael, et al.
Publicado: (2022) -
Models and Processes to Extract Drug-like Molecules From Natural Language Text
por: Hong, Zhi, et al.
Publicado: (2021) -
FAIR for AI: An interdisciplinary and international community building perspective
por: Huerta, E. A., et al.
Publicado: (2023) -
AI Fairness
por: Mahoney, Trisha
Publicado: (2020) -
Reproducible big data science: A case study in continuous FAIRness
por: Madduri, Ravi, et al.
Publicado: (2019)