Cargando…
Composites cement/BaSO(4)/Fe(3)O(4)/CuO for improving X-ray absorption characteristics and structural properties
Composite cement/BaSO(4)/Fe(3)O(4)/CuO with a thickness of 0.6 cm for various amounts of CuO: 2 wt%, 4 wt%, 6 wt%, and 8 wt% were successfully synthesized for the X-ray radiation shield. The bonding characteristics of composite and structural properties were determined using Fourier transform infrar...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649787/ https://www.ncbi.nlm.nih.gov/pubmed/36357772 http://dx.doi.org/10.1038/s41598-022-23908-0 |
Sumario: | Composite cement/BaSO(4)/Fe(3)O(4)/CuO with a thickness of 0.6 cm for various amounts of CuO: 2 wt%, 4 wt%, 6 wt%, and 8 wt% were successfully synthesized for the X-ray radiation shield. The bonding characteristics of composite and structural properties were determined using Fourier transform infrared spectra for the wavelength range of 4000–400 cm(−1) and X-ray diffraction with the range of 2θ from 25° to 50°, respectively. The shielding ability was measured using a mobile X-ray with an energy of 55, 66, and 77 keV for determining the mass and linear attenuation coefficient, electronic and atomic cross-section. These shield characteristics best agreement with theoretical calculation from the XCOM database for energy < 77 keV with half value layer (HVL) < 0.3 cm. The best shielding in this study indicated by the lowest HVL and MFP is composite for CuO 8 wt%. The HVL and MFP shows better values compared to the previous reported using composite rubber-based, indicated high potentials composite in this study for design new and efficient radiology rooms as an alternative concrete, especially for X-ray radiation, in the future. |
---|