Cargando…
Semi-supervised segmentation of metastasis lesions in bone scan images
To develop a deep image segmentation model that automatically identifies and delineates lesions of skeletal metastasis in bone scan images, facilitating clinical diagnosis of lung cancer–caused bone metastasis by nuclear medicine physicians. A semi-supervised segmentation model is proposed, comprisi...
Autores principales: | Lin, Qiang, Gao, Runxia, Luo, Mingyang, Wang, Haijun, Cao, Yongchun, Man, Zhengxing, Wang, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649900/ https://www.ncbi.nlm.nih.gov/pubmed/36387284 http://dx.doi.org/10.3389/fmolb.2022.956720 |
Ejemplares similares
-
Deep learning based automatic segmentation of metastasis hotspots in thorax bone SPECT images
por: Lin, Qiang, et al.
Publicado: (2020) -
ThermoScan: Semi-automatic Identification of Protein Stability Data From PubMed
por: Turina, Paola, et al.
Publicado: (2021) -
BGM-Net: Boundary-Guided Multiscale Network for Breast Lesion Segmentation in Ultrasound
por: Wu, Yunzhu, et al.
Publicado: (2021) -
Development of Supervised Learning Predictive Models for Highly Non-linear Biological, Biomedical, and General Datasets
por: Medina-Ortiz, David, et al.
Publicado: (2020) -
Shedding Light on the Molecular Recognition of Sub-Kilodalton Macrocyclic Peptides on Thrombin by Supervised Molecular Dynamics
por: Hassankalhori, Mahdi, et al.
Publicado: (2021)