Cargando…
Multi-task dispatch of shared autonomous electric vehicles for Mobility-on-Demand services – combination of deep reinforcement learning and combinatorial optimization method
The Autonomous Mobility-on-Demand system is an emerging green and sustainable transportation system providing on-demand mobility services for urban residents. To achieve the best recharging, delivering, and repositioning task assignment decision-making process for shared autonomous electric vehicles...
Autores principales: | Wang, Ning, Guo, Jiahui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649985/ https://www.ncbi.nlm.nih.gov/pubmed/36387499 http://dx.doi.org/10.1016/j.heliyon.2022.e11319 |
Ejemplares similares
-
Optimization of On-Demand Shared Autonomous Vehicle Deployments Utilizing Reinforcement Learning
por: Meneses-Cime, Karina, et al.
Publicado: (2022) -
Impacts of shared mobility on vehicle lifetimes and on the carbon footprint of electric vehicles
por: Morfeldt, Johannes, et al.
Publicado: (2022) -
Energy Dispatch for CCHP System in Summer Based on Deep Reinforcement Learning
por: Gao, Wenzhong, et al.
Publicado: (2023) -
Multi-objective economic emission dispatch of thermal power-electric vehicles considering user’s revenue
por: Qiao, Baihao, et al.
Publicado: (2022) -
Factors Influencing the Adoption of Shared Autonomous Vehicles
por: Yuen, Kum Fai, et al.
Publicado: (2020)