Cargando…
Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer
BACKGROUND: Annonaceous acetogenins have been reported to have anti-cancer properties but low viability. In this study, we aimed to investigate the potency of nanodiamonds to be employed as a carrier of annonacin to help increase its viability and inhibit the growth of breast cancer cells. METHODS:...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650002/ https://www.ncbi.nlm.nih.gov/pubmed/36387488 http://dx.doi.org/10.1016/j.heliyon.2022.e11418 |
_version_ | 1784827911163871232 |
---|---|
author | Dewi, Firli Rahmah Primula Shoukat, Nadia Alifiyah, Na'ilah Insani Wahyuningsih, Sri Puji Astuti Rosyidah, A'liyatur Prenggono, Muhammad Darwin Hartono, Hartono |
author_facet | Dewi, Firli Rahmah Primula Shoukat, Nadia Alifiyah, Na'ilah Insani Wahyuningsih, Sri Puji Astuti Rosyidah, A'liyatur Prenggono, Muhammad Darwin Hartono, Hartono |
author_sort | Dewi, Firli Rahmah Primula |
collection | PubMed |
description | BACKGROUND: Annonaceous acetogenins have been reported to have anti-cancer properties but low viability. In this study, we aimed to investigate the potency of nanodiamonds to be employed as a carrier of annonacin to help increase its viability and inhibit the growth of breast cancer cells. METHODS: The annonacin was coupled with nanodiamond and characterized using UV-Vis spectrophotometer, FTIR, SEM, and PSA, and determined their stability and drug release. A cell growth inhibition assay and cell migration assay was performed using the breast cancer MCF7 and T747D cell lines, and in vivo analysis was performed in rats (Rattus norvegicus). MCF7 and T747D cells were treated with 12.5 μg/mL annonacin coupled with nanodiamonds for 24 and 48 h and further analyzed by MTT, cell migration, and reactive oxygen species (ROS) assays. Twenty-five female rats were divided into five groups. Breast cancer was induced using two intraperitoneal doses of N-nitroso-N-methylurea (NMU) (50 and 30 mg/kg body weight). Annonacin coupled with nanodiamonds was administered by intraperitoneal injection (17.5 mg/kg body weight) for 5 weeks, one injection per 3 days. RESULTS: Administration of annonacin coupled with nanodiamonds significantly reduced MCF7 cell growth and reactive oxygen species (ROS) levels. The in vivo study showed that administration of annonacin coupled with nanodiamonds significantly reduced PI3KCA levels and increased p53 expression, reduced cancer antigen-15-3 (CA-15-3) levels in serum, increased caspase-3 expression, reduced Ki-67 levels, and reduced the thickness of the mammary ductal epithelium. CONCLUSIONS: Collectively, this study demonstrated the effectiveness of nanodiamonds as a carrier of annonacin to inhibit breast cancer cell growth through inhibition of the PI3K/Akt signaling pathway. |
format | Online Article Text |
id | pubmed-9650002 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96500022022-11-15 Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer Dewi, Firli Rahmah Primula Shoukat, Nadia Alifiyah, Na'ilah Insani Wahyuningsih, Sri Puji Astuti Rosyidah, A'liyatur Prenggono, Muhammad Darwin Hartono, Hartono Heliyon Research Article BACKGROUND: Annonaceous acetogenins have been reported to have anti-cancer properties but low viability. In this study, we aimed to investigate the potency of nanodiamonds to be employed as a carrier of annonacin to help increase its viability and inhibit the growth of breast cancer cells. METHODS: The annonacin was coupled with nanodiamond and characterized using UV-Vis spectrophotometer, FTIR, SEM, and PSA, and determined their stability and drug release. A cell growth inhibition assay and cell migration assay was performed using the breast cancer MCF7 and T747D cell lines, and in vivo analysis was performed in rats (Rattus norvegicus). MCF7 and T747D cells were treated with 12.5 μg/mL annonacin coupled with nanodiamonds for 24 and 48 h and further analyzed by MTT, cell migration, and reactive oxygen species (ROS) assays. Twenty-five female rats were divided into five groups. Breast cancer was induced using two intraperitoneal doses of N-nitroso-N-methylurea (NMU) (50 and 30 mg/kg body weight). Annonacin coupled with nanodiamonds was administered by intraperitoneal injection (17.5 mg/kg body weight) for 5 weeks, one injection per 3 days. RESULTS: Administration of annonacin coupled with nanodiamonds significantly reduced MCF7 cell growth and reactive oxygen species (ROS) levels. The in vivo study showed that administration of annonacin coupled with nanodiamonds significantly reduced PI3KCA levels and increased p53 expression, reduced cancer antigen-15-3 (CA-15-3) levels in serum, increased caspase-3 expression, reduced Ki-67 levels, and reduced the thickness of the mammary ductal epithelium. CONCLUSIONS: Collectively, this study demonstrated the effectiveness of nanodiamonds as a carrier of annonacin to inhibit breast cancer cell growth through inhibition of the PI3K/Akt signaling pathway. Elsevier 2022-11-05 /pmc/articles/PMC9650002/ /pubmed/36387488 http://dx.doi.org/10.1016/j.heliyon.2022.e11418 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Dewi, Firli Rahmah Primula Shoukat, Nadia Alifiyah, Na'ilah Insani Wahyuningsih, Sri Puji Astuti Rosyidah, A'liyatur Prenggono, Muhammad Darwin Hartono, Hartono Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer |
title | Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer |
title_full | Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer |
title_fullStr | Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer |
title_full_unstemmed | Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer |
title_short | Increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (Rattus norvegicus)-Induced breast cancer |
title_sort | increasing the effect of annonacin using nanodiamonds to inhibit breast cancer cells growth in rats (rattus norvegicus)-induced breast cancer |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650002/ https://www.ncbi.nlm.nih.gov/pubmed/36387488 http://dx.doi.org/10.1016/j.heliyon.2022.e11418 |
work_keys_str_mv | AT dewifirlirahmahprimula increasingtheeffectofannonacinusingnanodiamondstoinhibitbreastcancercellsgrowthinratsrattusnorvegicusinducedbreastcancer AT shoukatnadia increasingtheeffectofannonacinusingnanodiamondstoinhibitbreastcancercellsgrowthinratsrattusnorvegicusinducedbreastcancer AT alifiyahnailahinsani increasingtheeffectofannonacinusingnanodiamondstoinhibitbreastcancercellsgrowthinratsrattusnorvegicusinducedbreastcancer AT wahyuningsihsripujiastuti increasingtheeffectofannonacinusingnanodiamondstoinhibitbreastcancercellsgrowthinratsrattusnorvegicusinducedbreastcancer AT rosyidahaliyatur increasingtheeffectofannonacinusingnanodiamondstoinhibitbreastcancercellsgrowthinratsrattusnorvegicusinducedbreastcancer AT prenggonomuhammaddarwin increasingtheeffectofannonacinusingnanodiamondstoinhibitbreastcancercellsgrowthinratsrattusnorvegicusinducedbreastcancer AT hartonohartono increasingtheeffectofannonacinusingnanodiamondstoinhibitbreastcancercellsgrowthinratsrattusnorvegicusinducedbreastcancer |