Cargando…
The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain
CRISPR-associated Rossmann fold (CARF) domain signaling underpins modulation of CRISPR-Cas nucleases; however, the RtcR CARF domain controls expression of two conserved RNA repair enzymes, cyclase RtcA and ligase RtcB. Here, we demonstrate that RtcAB are required for RtcR-dependent transcription act...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650030/ https://www.ncbi.nlm.nih.gov/pubmed/36388977 http://dx.doi.org/10.1016/j.isci.2022.105425 |
_version_ | 1784827918313062400 |
---|---|
author | Kotta-Loizou, Ioly Giuliano, Maria Grazia Jovanovic, Milija Schaefer, Jorrit Ye, Fuzhou Zhang, Nan Irakleidi, Danai Athina Liu, Xiaojiao Zhang, Xiaodong Buck, Martin Engl, Christoph |
author_facet | Kotta-Loizou, Ioly Giuliano, Maria Grazia Jovanovic, Milija Schaefer, Jorrit Ye, Fuzhou Zhang, Nan Irakleidi, Danai Athina Liu, Xiaojiao Zhang, Xiaodong Buck, Martin Engl, Christoph |
author_sort | Kotta-Loizou, Ioly |
collection | PubMed |
description | CRISPR-associated Rossmann fold (CARF) domain signaling underpins modulation of CRISPR-Cas nucleases; however, the RtcR CARF domain controls expression of two conserved RNA repair enzymes, cyclase RtcA and ligase RtcB. Here, we demonstrate that RtcAB are required for RtcR-dependent transcription activation and directly bind to RtcR CARF. RtcAB catalytic activity is not required for complex formation with CARF, but is essential yet not sufficient for RtcRAB-dependent transcription activation, implying the need for an additional RNA repair-dependent activating signal. This signal differs from oligoadenylates, a known ligand of CARF domains, and instead appears to originate from the translation apparatus: RtcB repairs a tmRNA that rescues stalled ribosomes and increases translation elongation speed. Taken together, our data provide evidence for an expanded range for CARF domain signaling, including the first evidence of its control via in trans protein-protein interactions, and a feed-forward mechanism to regulate RNA repair required for a functioning translation apparatus. |
format | Online Article Text |
id | pubmed-9650030 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96500302022-11-15 The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain Kotta-Loizou, Ioly Giuliano, Maria Grazia Jovanovic, Milija Schaefer, Jorrit Ye, Fuzhou Zhang, Nan Irakleidi, Danai Athina Liu, Xiaojiao Zhang, Xiaodong Buck, Martin Engl, Christoph iScience Article CRISPR-associated Rossmann fold (CARF) domain signaling underpins modulation of CRISPR-Cas nucleases; however, the RtcR CARF domain controls expression of two conserved RNA repair enzymes, cyclase RtcA and ligase RtcB. Here, we demonstrate that RtcAB are required for RtcR-dependent transcription activation and directly bind to RtcR CARF. RtcAB catalytic activity is not required for complex formation with CARF, but is essential yet not sufficient for RtcRAB-dependent transcription activation, implying the need for an additional RNA repair-dependent activating signal. This signal differs from oligoadenylates, a known ligand of CARF domains, and instead appears to originate from the translation apparatus: RtcB repairs a tmRNA that rescues stalled ribosomes and increases translation elongation speed. Taken together, our data provide evidence for an expanded range for CARF domain signaling, including the first evidence of its control via in trans protein-protein interactions, and a feed-forward mechanism to regulate RNA repair required for a functioning translation apparatus. Elsevier 2022-10-20 /pmc/articles/PMC9650030/ /pubmed/36388977 http://dx.doi.org/10.1016/j.isci.2022.105425 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Kotta-Loizou, Ioly Giuliano, Maria Grazia Jovanovic, Milija Schaefer, Jorrit Ye, Fuzhou Zhang, Nan Irakleidi, Danai Athina Liu, Xiaojiao Zhang, Xiaodong Buck, Martin Engl, Christoph The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain |
title | The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain |
title_full | The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain |
title_fullStr | The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain |
title_full_unstemmed | The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain |
title_short | The RNA repair proteins RtcAB regulate transcription activator RtcR via its CRISPR-associated Rossmann fold domain |
title_sort | rna repair proteins rtcab regulate transcription activator rtcr via its crispr-associated rossmann fold domain |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650030/ https://www.ncbi.nlm.nih.gov/pubmed/36388977 http://dx.doi.org/10.1016/j.isci.2022.105425 |
work_keys_str_mv | AT kottaloizouioly thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT giulianomariagrazia thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT jovanovicmilija thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT schaeferjorrit thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT yefuzhou thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT zhangnan thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT irakleididanaiathina thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT liuxiaojiao thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT zhangxiaodong thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT buckmartin thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT englchristoph thernarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT kottaloizouioly rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT giulianomariagrazia rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT jovanovicmilija rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT schaeferjorrit rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT yefuzhou rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT zhangnan rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT irakleididanaiathina rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT liuxiaojiao rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT zhangxiaodong rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT buckmartin rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain AT englchristoph rnarepairproteinsrtcabregulatetranscriptionactivatorrtcrviaitscrisprassociatedrossmannfolddomain |