Cargando…
A survey on federated learning: challenges and applications
Federated learning (FL) is a secure distributed machine learning paradigm that addresses the issue of data silos in building a joint model. Its unique distributed training mode and the advantages of security aggregation mechanism are very suitable for various practical applications with strict priva...
Autores principales: | Wen, Jie, Zhang, Zhixia, Lan, Yang, Cui, Zhihua, Cai, Jianghui, Zhang, Wensheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9650178/ https://www.ncbi.nlm.nih.gov/pubmed/36407495 http://dx.doi.org/10.1007/s13042-022-01647-y |
Ejemplares similares
-
Challenges and future directions of secure federated learning: a survey
por: Zhang, Kaiyue, et al.
Publicado: (2021) -
Multimodal Federated Learning: A Survey
por: Che, Liwei, et al.
Publicado: (2023) -
Federated Learning in Dentistry: Chances and
Challenges
por: Rischke, R., et al.
Publicado: (2022) -
Federated Learning on Multimodal Data: A Comprehensive Survey
por: Lin, Yi-Ming, et al.
Publicado: (2023) -
Federated learning in cloud-edge collaborative architecture: key technologies, applications and challenges
por: Bao, Guanming, et al.
Publicado: (2022)